On the cognitive processes underlying contextual interference: Contributions of practice schedule, task similarity and amount of practice (original) (raw)
Related papers
Cognitive underpinnings of contextual interference during motor learning
Acta Psychologica, 2010
The reported study examined the cognitive processes underlying contextual interference (CI) in motor learning. This experiment was designed to assess the combined influence of practice schedule (blocked or random) and task similarity (similar or dissimilar) on acquisition and retention performance. Participants (N = 60) learned a set of three variations of a timing task according to a similar (900, 1000 and 1100 ms) or dissimilar parameter condition (700, 1000 and 1300 ms) with either a blocked or random practice order: this resulted in 4 experimental groups. Performance in delayed retention demonstrated a typical CI effect due to the schedule of practice for the dissimilar parameter condition with the random practice group outperforming the blocked practice group. Conversely, no blocked-random difference was found for the similar parameter condition. These findings lend support for the reconstruction hypothesis by showing that supplementing random practice with additional intertask elaboration (i.e., similar parameter condition) did not facilitate subsequent retention performance.
Contextual interference and augmented feedback: Is there an additive effect for motor learning?
Human Movement Science, 2011
Learning to perform a skilled behavior is affected by the context of the practice session and the frequency of augmented feedback. We studied the combined effect of these variables in the acquisition of a ballistic, bi-directional lever movement pattern involving four different target locations as measured by performance in practice, retention, and transfer tests. Augmented feedback was presented in either an every-trial or a faded schedule during random and blocked practice. Consistent with the contextual interference effect, the blocked practice group produced lower errors in acquisition, but the random practice group outperformed the blocked practice group in both retention and transfer. In contrast, faded feedback did not have a beneficial effect on learning and degraded learning when provided during blocked practice. While the results were consistent with previous findings of random and blocked practice, they were not consistent with previous findings of reduced feedback frequencies.
Contextual Interference in Complex Bimanual Skill Learning Leads to Better Skill Persistence
PLoS ONE, 2014
The contextual interference (CI) effect is a robust phenomenon in the (motor) skill learning literature. However, CI has yielded mixed results in complex task learning. The current study addressed whether the CI effect is generalizable to bimanual skill learning, with a focus on the temporal evolution of memory processes. In contrast to previous studies, an extensive training schedule, distributed across multiple days of practice, was provided. Participants practiced three frequency ratios across three practice days following either a blocked or random practice schedule. During the acquisition phase, better overall performance for the blocked practice group was observed, but this difference diminished as practice progressed. At immediate and delayed retention, the random practice group outperformed the blocked practice group, except for the most difficult frequency ratio. Our main finding is that the random practice group showed superior performance persistence over a one week time interval in all three frequency ratios compared to the blocked practice group. This study contributes to our understanding of learning, consolidation and memory of complex motor skills, which helps optimizing training protocols in future studies and rehabilitation settings.
Between-Trial Forgetting Due to Interference and Time in Motor Adaptation
PloS one, 2015
Learning a motor task with temporally spaced presentations or with other tasks intermixed between presentations reduces performance during training, but can enhance retention post training. These two effects are known as the spacing and contextual interference effect, respectively. Here, we aimed at testing a unifying hypothesis of the spacing and contextual interference effects in visuomotor adaptation, according to which forgetting between trials due to either spaced presentations or interference by another task will promote between-trial forgetting, which will depress performance during acquisition, but will promote retention. We first performed an experiment with three visuomotor adaptation conditions: a short inter-trial-interval (ITI) condition (SHORT-ITI); a long ITI condition (LONG-ITI); and an alternating condition with two alternated opposite tasks (ALT), with the same single-task ITI as in LONG-ITI. In the SHORT-ITI condition, there was fastest increase in performance dur...
Contextual Interference Effect Depends on the Amount of Time Separating Acquisition and Testing
Advances in Physical Education, 2014
Considering the critical role permanence has on predictions related to the contextual interference effect, this study sought to determine whether the manifestation of the effect depends on the time interval separating the acquisition phase (AQ) from the retention test (RT). Four groups of blocked (BL) and four groups of random practice (RD) performed 90 trials of a dart throwing task (AQ) and were tested exclusively after 10 minutes (BL10 and RD10), 24 hours (BL24 and RD24), 7 days (BL7 and RD7) or 30 days (BL30 and RD30). In the AQ, blocked groups performed three blocks of trials, with each block consisting of throwing the darts from one of three distances (2 m, 2.6 m and 3.2 m). For the random groups, the trial order was pseudo-randomized. The results indicated superior performance of RD24, compared to BL24, but no difference was found between the groups tested after 10 minutes, 7 days or 30 days. Thus, our results do not support the notion that higher contextual interference promotes immediate learning benefits nor long-term retention of internal representations. Nevertheless, future research should further investigate the processes underlying the contextual interference effect, since short-term gains (24 h) were found.
Dual-task practice enhances motor learning: a preliminary investigation
Experimental Brain Research, 2012
Your article is protected by copyright and all rights are held exclusively by Springer-Verlag. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author's version for posting to your own website or your institution's repository. You may further deposit the accepted author's version on a funder's repository at a funder's request, provided it is not made publicly available until 12 months after publication. Abstract Practicing a motor task under dual-task conditions can be beneficial to motor learning when the secondary task is difficult (Roche et al. in Percept Psychophys 69(4):513-522, 2007) or when it engages similar processes as the primary motor task (Hemond et al. in J Neurosci 30(2):650-654, 2010)
When individuals acquire new skills, initial performance is typically better and tasks are judged to be easier when the tasks are segregated and practiced by block, compared to when different tasks are randomly intermixed in practice. However, subsequent skill retention is better for a randomly practiced group, an effect known as contextual interference (CI). The present study examined the neural substrates of CI using functional magnetic resonance imaging (fMRI). Individuals learned a set of three 4-element sequences with the left hand according to a block or random practice schedule. Behavioral retest for skill retention confirmed the presence of a typical CI effect with the random group outperforming the block group. Using a go/no-go fMRI paradigm, sequence preparation during the premovement study period was separated from movement execution. Imaging data for the two groups were compared for the first 1/3 and final 1/3 of training trials. Toward the end of training, behavioral performance between the two groups was similar, although the random group would later display a performance advantage on retention testing. During study time, the random group showed greater activity in sensorimotor and premotor regions compared to the block group. These areas are associated with motor preparation, sequencing, and response selection. This pattern of recruitment is consistent with the hypothesis that CI benefits in a sequencing task are due to improved capacity to actively prepare motor responses.