Estimating the Dimension of a Manifold and finding local charts on it by using Nonlinear Singular Value Decomposition, Prabhakar G. Vaidya and Sajini Anand P S, Topology Proceedings, Vol. 43 (2014) pp. 1–15. ISSN: 0146-4124 (Print version), ISSN: 2331-1290 (electronic version). (original) (raw)

Estimating the dimension of a manifold and finding local charts on it by using nonlinear single value decomposition

Sajini Anand P S

2014

View PDFchevron_right

Geometrically local embedding in manifolds for dimension reduction

Hongsheng He

Pattern Recognition, 2012

View PDFchevron_right

On Local Intrinsic Dimension Estimation and Its Applications

Alfred O. Hero

View PDFchevron_right

Dimension estimation of image manifolds by minimal cover approximation

Stephen Maybank

Neurocomputing, 2013

View PDFchevron_right

Estimating the embedding dimension

Zoran Aleksic

Physica D: Nonlinear Phenomena, 1991

View PDFchevron_right

Intrinsic Dimension Estimation: Relevant Techniques and a Benchmark Framework

Alessandro Rozza

Mathematical Problems in Engineering, 2015

View PDFchevron_right

IDEA: Intrinsic Dimension Estimation Algorithm

Elena Casiraghi

Lecture Notes in Computer Science, 2011

View PDFchevron_right

Manifold Hypothesis in Data Analysis: Double Geometrically-Probabilistic Approach to Manifold Dimension Estimation

Gleb Nosovskiy

2021

View PDFchevron_right

Manifold-adaptive dimension estimation

Csaba Szepesvari

Proceedings of the 24th …, 2007

View PDFchevron_right

Singular-value decomposition and embedding dimension

Paul Rapp

Physical review, 1987

View PDFchevron_right

Principal Manifolds for Data Visualization and Dimension Reduction

Andrei Zinovyev

Lecture Notes in Computational Science and Enginee, 2008

View PDFchevron_right

Principal manifolds for data visualization and dimension reduction, Lecture notes in computational science & engineering, Vol 58

Wesam Ashour

2008

View PDFchevron_right

Variance Reduction with neighborhood smoothing for local intrinsic dimension estimation

Alfred O. Hero

View PDFchevron_right

On the development of non-parametric methods to estimate intrinsic dimensions of nonlinear data structures

Jochen Einbeck

International Journal of Pattern Recognition and Artificial Intelligence

View PDFchevron_right

Nonlinear dimensionality reduction of data manifolds with essential loops

John Lee

Neurocomputing, 2005

View PDFchevron_right

Topology Preservation Measures in the Visualization of Manifold-Type Multidimensional Data

Gintautas Dzemyda

Informatica

View PDFchevron_right

Optimization of the Maximum Likelihood Estimator for Determining the Intrinsic Dimensionality of High–Dimensional Data

FAHAD MOSTAFA

International Journal of Applied Mathematics and Computer Science, 2015

View PDFchevron_right

Intrinsic Dimension Estimation of Data: An Approach Based on Grassberger–Procaccia's Algorithm

Alessandro Vinciarelli

Neural Processing Letters, 2001

View PDFchevron_right

Intrinsic dimensionality estimation with optimally topology preserving maps

Gerald Sommer

IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998

View PDFchevron_right

Review of Dimension Reduction Methods

Benjamin Ansah Acquaye

Journal of Data Analysis and Information Processing, 2021

View PDFchevron_right

A note on the locally linear embedding algorithm

Michael Brooks

2009

View PDFchevron_right

Geometry-Aware Maximum Likelihood Estimation of Intrinsic Dimension

Yury Yanovich

2019

View PDFchevron_right

Toward a Quantitative Survey of Dimension Reduction Techniques

Nina S. T. Hirata

IEEE Transactions on Visualization and Computer Graphics, 2019

View PDFchevron_right

Regression on manifolds using kernel dimension reduction

Fei Sha

2007

View PDFchevron_right

Novel high intrinsic dimensionality estimators

Elena Casiraghi

Machine Learning, 2012

View PDFchevron_right

Practical Considerations on Nonparametric Methods for Estimating Intrinsic Dimensions of Nonlinear Data Structures

Uwe Kruger

International Journal of Pattern Recognition and Artificial Intelligence, 2019

View PDFchevron_right

Neural networks for estimating intrinsic dimension

maher ali

Physical review. E, Statistical, nonlinear, and soft matter physics, 2002

View PDFchevron_right

De-biasing local dimension estimation

Alfred O. Hero

View PDFchevron_right

Estimating Local Intrinsic Dimensionality

Teddy Furon

Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015

View PDFchevron_right

SELECTION OF THE NUMBER OF NEIGHBOURS OF EACH DATA POINT FOR THE LOCALLY LINEAR EMBEDDING ALGORITHM

Gintautas Dzemyda

2007

View PDFchevron_right

A New Approach to Improve the Topological Stability in Non-Linear Dimensionality Reduction

Mahmoud Masoud

IEEE Access

View PDFchevron_right

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

Leland McInnes

ArXiv, 2018

View PDFchevron_right

A survey of dimensionality reduction techniques

javier vargas

View PDFchevron_right