Ferroelectric and proton conducting behavior of a new elpasolite-related vanadium oxyfluoride (NH4,K)3VO2F4 (original) (raw)

Journal of Materials Research, 2010

Abstract

A new elpasolite-type (NH4,K)3VO2F4 compound was prepared and characterized by x-ray diffraction, differential scanning calorimeter (DSC), impedance analysis, and electrical polarization measurements. It crystallizes in an orthorhombic lattice with unit-cell parameters: a = 8.9584(4), b = 18.6910(14), c = 6.2174(4) Å, V = 1041.04(11) Å3, Z = 6. NH4+, and K+ ions are distributed statistically over crystallographically four equivalent sites. There are two distinguishable vanadium atoms forming cis- and trans-VO2F4 octahedra present in the unit cell. High-temperature studies by DSC and in situ x-ray diffraction revealed a first-order structural transformation from orthorhombic to cubic lattice around 343 K. Impedance measurements show two different kinds of conductivity behaviors for the two phases. In orthorhombic phase a significant conductivity resulting from involvement of protonic species is observed. In the orthorhombic phase, a clear ferroelectric hysteresis loop is observed.

S. Achary hasn't uploaded this paper.

Let S. know you want this paper to be uploaded.

Ask for this paper to be uploaded.