Effects of lipopolysaccharide exposure in primary bovine ruminal epithelial cells (original) (raw)
Related papers
Various factors affect lipopolysaccharide sensitization in cell cultures
BioTechniques, 2020
Commercially available lipopolysaccharide (LPS) is commonly used in research. Although protocols for its use are well established, we experienced a loss of LPS responsiveness in our cell cultures despite no obvious experimental changes. Our cell lines were stimulated with LPS and the media quantified for LPS responsiveness via an IL-8 ELISA. We discovered that the major cause of signal loss was differences in fetal bovine serum (FBS) formulation and concentration. One FBS formulation was notably better at eliciting an IL-8 signal than the second FBS, and 10% FBS in media was better at inducing LPS responsiveness than lower concentrations. We urge researchers to be aware of inherent variations in seemingly commonplace reagents as they may be unexpected sources of inconsistencies.
BMC Proceedings, 2011
Background Experimental exposure of swine neutrophils to bacterial lipopolysaccharide (LPS) represents a model to study the innate immune response during bacterial infection. Neutrophils can effectively limit the infection by secreting lipid mediators, antimicrobial molecules and a combination of reactive oxygen species (ROS) without new synthesis of proteins. However, it is known that neutrophils can modify the gene expression after LPS exposure. We performed microarray gene expression analysis in order to elucidate the less known transcriptional response of neutrophils during infection. Methods Blood samples were collected from four healthy Iberian pigs and neutrophils were isolated and incubated during 6, 9 and 18 hrs in presence or absence of lipopolysaccharide (LPS) from Salmonella enterica serovar Typhimurium. RNA was isolated and hybridized to Affymetrix Porcine GeneChip®. Microarray data were normalized using Robust Microarray Analysis (RMA) and then, differential expression was obtained by an analysis of variance (ANOVA). Results ANOVA data analysis showed that the number of differentially expressed genes (DEG) after LPS treatment vary with time. The highest transcriptional response occurred at 9 hr post LPS stimulation with 1494 DEG whereas at 6 and 18 hr showed 125 and 108 DEG, respectively. Three different gene expression tendencies were observed: genes in cluster 1 showed a tendency toward up-regulation; cluster 2 genes showing a tendency for down-regulation at 9 hr; and cluster 3 genes were up-regulated at 9 hr post LPS stimulation. Ingenuity Pathway Analysis revealed a delay of neutrophil apoptosis at 9 hr. Many genes controlling biological functions were altered with time including those controlling metabolism and cell organization, ubiquitination, adhesion, movement or inflammatory response. Conclusions LPS stimulation alters the transcriptional pattern in neutrophils and the present results show that the robust transcriptional potential of neutrophils under infection conditions, indicating that active regulation of gene expression plays a major role in the neutrophil-mediated- innate immune response.
Clinical and Experimental Immunology, 2016
Summary The technique of challenging postmortem tissue explants with inflammation inducer such as lipopolysaccharide (LPS) followed by gene expression analysis is used widely for evaluating the immune-suppressing effect of bioactives. Using porcine colonic tissue as an ex-vivo model of mammalian intestinal gut, this study evaluated the effect of incubation time on the integrity of gene transcripts and activation of inflammatory immune gene cascade by LPS treatment. Post-slaughter colon was removed surgically and explants were incubated for 0, 3, 6 and 12 h and the abundance of mRNA transcripts of a panel of 92 immune genes were evaluated using quantitative polymerase chain reaction (qPCR) arrays. The mRNA transcripts were highly intact after 0 and 3 h of incubation; however, after 6 h the degradation was clearly evident. Following 3 h incubation, 98·8% and 100% mRNA transcripts were detectable in the colonic tissue harvested from weaned and mature pigs, respectively. In the explants...