Odorant receptor genes are expressed in olfactory neuroblastoma (original) (raw)
Related papers
Induction of differentiation of human olfactory neuroblastoma cells into odorant-responsive cells
Neuroscience, 1996
Olfactory neuroblastoma is a rare malignancy of the olfactory mucosa that may be derived from the olfactory epithelium. To characterize this tumor, we cultured olfactory neuroblastoma cells in the presence or absence of growth factors (transforming growth factor α and basic fibroblast growth factor) known to affect olfactory tissue and assessed their responsiveness to known odorants by measuring changes in intracellular calcium. Untreated cells did not respond to odorants. Basic fibroblast growth factor treatment had cytotoxic effects, and treated cells did not respond to odorants. Transforming growth factor α treatment resulted in the induction of odor responsiveness in these cells. Cells responded to odorants at 100 nM to 100 μM concentrations and responded with both increases and decreases in intracellular calcium. Increases in intracellular calcium were mediated by a calcium influx and were reversibly blocked by compounds known to inhibit second messenger pathways in olfactory receptor neurons. The calcium responses of the olfactory neuroblastoma cells were thus specific to the odorants and similar to those found in olfactory receptor neurons.The results support the notion that olfactory neuroblastoma cells may be of olfactory origin and thus they can be used as a model cell line to study human olfaction.
Cancers, 2021
Simple Summary The gene expression profile of ONB defines a group of patients with a dismal prognosis and identifies potentially targetable pathways. Better prognostic stratification may offer new tailored approaches for the treatment and follow-up of ONB. The integration of new therapeutic agents with standard surgical and RT strategies may improve the outcomes in cases with worse prognoses. Furthermore, the ontogenesis of ONB in basal and neural subtypes is mirrored by different transcriptional pathways, paving the way towards different therapeutic approaches. Abstract Olfactory neuroblastoma (ONB) is a rare sinonasal neoplasm with a peculiar behavior, for which limited prognostic factors are available. Herein, we investigate the transcriptional pathways altered in ONB and correlate them with pathological features and clinical outcomes. We analyze 32 ONB patients treated with curative intent at two independent institutions from 2001 to 2019 for whom there is available pathologic a...
Human Olfactory Receptors: Novel Cellular Functions Outside of the Nose
Physiological reviews, 2018
Olfactory receptors (ORs) are not exclusively expressed in the olfactory sensory neurons; they are also observed outside of the olfactory system in all other human tissues tested to date, including the testis, lung, intestine, skin, heart, and blood. Within these tissues, certain ORs have been determined to be exclusively expressed in only one tissue, whereas other ORs are more widely distributed in many different tissues throughout the human body. For most of the ectopically expressed ORs, limited data are available for their functional roles. They have been shown to be involved in the modulation of cell-cell recognition, migration, proliferation, the apoptotic cycle, exocytosis, and pathfinding processes. Additionally, there is a growing body of evidence that they have the potential to serve as diagnostic and therapeutic tools, as ORs are highly expressed in different cancer tissues. Interestingly, in addition to the canonical signaling pathways activated by ORs in olfactory senso...
Of mice and men: olfactory neuroblastoma among animals and humans
Veterinary and Comparative Oncology, 2014
Olfactory neuroblastoma (ONB) is a rare tumour of nasal cavity and paranasal sinuses that arises from the olfactory neuroepithelium and has unpredictable clinical course. As the sense of smell is phylogenetically one of the first senses and olfactory neuroepithelium is evolutionary conserved with striking similarities among different species, we performed an extensive analysis of the literature in order to evaluate the similarities and differences between animals and humans on the clinical, morphological, immunohistochemical, ultrastructural and molecular level. Our analysis revealed that ONB was reported mainly in mammals and showed striking similarities to human ONB. These observations provide rationale for introduction of therapy modalities used in humans into the veterinary medicine. Animal models of neuroblastoma should be considered for the preclinical studies evaluating novel therapies for ONB.
Olfactory receptor gene expression
Seminars in Cell & Developmental Biology, 1997
Recognition and discrimination of odorous molecules are determined by heptahelical G-protein-coupled receptor proteins localized primarily in the ciliary membrane of olfactory sensory neurons. The discovery of a large multigene family encoding odorant receptors allows us to approach various facets concerning the molecular basis of olfactory chemospecificity, ranging from chromosomal localization and control of expression of olfactory receptor genes to temporal and spatial expression patterns of various receptor types in the nasal neuroepithelium. The target-independent onset of receptor expression and its topographical organization suggest a precommited functional identity of olfactory neurons.
The genomics and epigenetics of olfactory neuroblastoma: A systematic review
Laryngoscope Investigative Otolaryngology, 2021
Background: Olfactory neuroblastoma (ONB) or esthesioneuroblastoma (ENB) is a rare malignancy of the nasal cavity believed to arise from the olfactory epithelium. The goal of this study was to systematically review the genomics, epigenetics, and cytogenetics of ONB and to understand the potential clinical implications of these studies. Methods: A systematic literature review was performed for articles published before May 2020 using Cochrane, Embase, Pubmed, and Scopus databases. Inclusion criteria included genomics, cytogenetics, and epigenetics studies on ONB. Exclusion criteria included studies not in English or systematic reviews. Articles and abstracts were reviewed by two independent reviewers to reduce bias during article selection and synthesis of results. Of the 36 studies included in this review, 24 were research articles and 12 were abstracts. Results: Although recurrent mutations among ONB tumors are uncommon, alterations in TP53,
Activity-Dependent Modulation of Odorant Receptor Gene Expression in the Mouse Olfactory Epithelium
PLoS ONE, 2013
Activity plays critical roles in development and maintenance of the olfactory system, which undergoes considerable neurogenesis throughout life. In the mouse olfactory epithelium, each olfactory sensory neuron (OSN) stably expresses a single odorant receptor (OR) type out of a repertoire of ,1200 and the OSNs with the same OR identity are distributed within one of the few broadly-defined zones. However, it remains elusive whether and how activity modulates such OR expression patterns. Here we addressed this question by investigating OR gene expression via in situ hybridization when sensory experience or neuronal excitability is manipulated. We first examined the expression patterns of fifteen OR genes in mice which underwent neonatal, unilateral naris closure. After four-week occlusion, the cell density in the closed (sensorydeprived) side was significantly lower (for four ORs), similar (for three ORs), or significantly higher (for eight ORs) as compared to that in the open (over-stimulated) side, suggesting that sensory inputs have differential effects on OSNs expressing different OR genes. We next examined the expression patterns of seven OR genes in transgenic mice in which mature OSNs had reduced neuronal excitability. Neuronal silencing led to a significant reduction in the cell density for most OR genes tested and thinner olfactory epithelium with an increased density of apoptotic cells. These results suggest that sensory experience plays important roles in shaping OR gene expression patterns and the neuronal activity is critical for survival of OSNs.
Genome Biology, 2007
Olfactory receptor expression
Using a microarray, expression of 76% of predicted human olfactory receptor genes was detected in olfactory epithelia, and many were expressed in non-olfactory tissues.
Abstract Background: Olfactory receptor (OR) genes were discovered more than a decade ago, when Buck and Axel observed that, in rats, certain G-protein coupled receptors are expressed exclusively in the olfactory epithelium. Subsequently, protein sequence similarity was used to identify entire OR gene repertoires of a number of mammalian species, but only in mouse were these predictions followed up by expression studies in olfactory epithelium. To rectify this, we have developed a DNA microarray that contains probes for most predicted human OR loci and used that array to examine OR gene expression profiles in olfactory epithelium tissues from three individuals.Olfactory neuroblastoma: Up-to-date review and our experience
Romanian Journal of Rhinology
Olfactory neuroblastoma (ONB), also known as esthesioneuroblastoma, is a rare malignant neuroectodermal tumor originating primarily from the basal layer of the olfactory epithelium in the roof of the nasal cavity. The most common symptoms are nasal obstruction, anosmia, recurrent epistaxis, rhinorrhea and excessive lacrimation. Imaging studies are helpful for assessing the extent of olfactory neuroblastoma, as well as grading the tumor. The definitive diagnosis is based on histopathological exam and immunohistochemistry profile and it might be quite challenging because the tumor can mimic other sinonasal malignancies. Because of the small number of reported cases and the lack of prospective research, the optimal treatment for olfactory neuroblastoma is still controversial. However, it is generally believed that surgical resection followed by radiotherapy gives the best outcome in terms of recurrence and survival rates. Keeping in mind the rarity of olfactory neuroblastoma and the di...
A novel brain receptor is expressed in a distinct population of olfactory sensory neurons
European Journal of Neuroscience, 2000
Three novel G-protein-coupled receptor genes related to the previously described RA1c gene have been isolated from the mouse genome. Expression of these genes has been detected in distinct areas of the brain and also in the olfactory epithelium of the nose. Developmental studies revealed a differential onset of expression: in the brain at embryonic stage 17, in the olfactory system at stage E12. In order to determine which cell type in the olfactory epithelium expresses this unique receptor type, a transgenic approach was employed which allowed a coexpression of histological markers together with the receptor and thus visualization of the appropriate cell population. It was found that the receptor-expressing cells were located very close to the basal membrane of the epithelium; however, the cells extended a dendritic process to the epithelial surface and their axons projected into the main olfactory bulb where they converged onto two or three glomeruli in the dorsal and posterior region of the bulb. Thus, these data provide evidence that this unique type of receptor is expressed in mature olfactory neurons and suggests that it may be involved in the detection of special odour molecules.