Blockchain-Enabled Multi-Operator Small Cell Network for Beyond 5G Systems (original) (raw)
Related papers
Blockchain and SDN Architecture for Spectrum Management in Cellular Networks
IEEE Access
Whereas 4G LTE networks have brought about an increase in data rates of mobile networks, they are unable to meet the capacity demands of future networks. Specifically, the centralized nature of the evolved packet core (EPC) makes the network non-scalable to match the exponential increase in number of wireless devices in addition to the complexities of diverse service requirements. The SDN concept has recently attracted a lot of research interest as a viable proposition for bringing about programmability and ease of network management while also offering flexibility for innovative network designs. However, current SDN implementations are not adapted to support business agreements that foster interoperability among mobile network operators (MNOs). This paper is an extended version of our earlier work and we intend to present a unified SDN and blockchain architecture with enhanced spectrum management features for enabling seamless user roaming capabilities between MNOs. Our simulation results show that users can experience no disruption in service with very minimal delay as they traverse between operators.
Blockchain-enabled Network Sharing for O-RAN in 5G and Beyond
2021
The innovation provided by network virtualization in 5G, together with standardization and openness boosted by the Open Radio Access Network (O-RAN) Alliance, has paved the way to a collaborative future in cellular systems, driven by flexible network sharing. Such advents are expected to attract new players like content providers and verticals, increasing competitiveness in the telecom market. However, scalability and trust issues are expected to arise, given the criticality of ownership traceability and resource exchanging in a sharing ecosystem. To address that, we propose integrating blockchain technology for enabling mobile operators and other players to exchange RAN resources (e.g., infrastructure) in the form of virtual network functions (VNF) autonomously and dynamically. Blockchain will provide automation, robustness, trustworthiness, and reliability to mobile networks, thus bringing confidence to open RAN environments. In particular, we define a novel O-RAN-based blockchain...
Smart Contract SLAs for Dense Small-Cell-as-a-Service
ArXiv, 2017
The disruptive power of blockchain technologies represents a great opportunity to re-imagine standard practices of telecommunication networks and to identify critical areas that can benefit from brand new approaches. As a starting point for this debate, we look at the current limits of infrastructure sharing, and specifically at the Small-Cell-as-a-Service trend, asking ourselves how we could push it to its natural extreme: a scenario in which any individual home or business user can become a service provider for mobile network operators, freed from all the scalability and legal constraints that are inherent to the current modus operandi. We propose the adoption of smart contracts to implement simple but effective Service Level Agreements (SLAs) between small cell providers and mobile operators, and present an example contract template based on the Ethereum blockchain.
Blockchain-based Decentralized Service Provisioning in Local 6G Mobile Networks
Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, 2021
The paper presents a novel vision on the application of blockchain technology to empower the dynamic service provisioning in future 6G mobile networks. We propose a platform for decentralized service level agreement (SLA) negotiation between users and mobile network operators (MNOs) based on smart contracts and cryptocurrencies. In addition, the new quality of experience (QoE) model is proposed for end-users to customize their trade-off between SLA and service price. Finally, we develop the method of dynamic service selection among multiple MNOs that provides border-less connectivity for end-users with the guaranteed QoE regardless of the serving MNO. CCS CONCEPTS • Networks → Network management; Network design principles; • Human-centered computing → Ubiquitous and mobile devices; • Security and privacy → Cryptography.
A Proposal on How to Use Blockchain to Secure Communications in 5G Ecosystem
International Journal of Future Computer and Communication
5G provides businesses with high-speed Internet access, faster bandwidth, and low latency. The use of IoT and 5G-enabled sensors provides new opportunities within networks. There are several use cases of 5G with IoT health care, agriculture, remote learning, logistics, manufacturing, government, and retail. However, some security and privacy problems must be addressed within the 5G ecosystem. There is a need to secure user and device associations and data integrity as 5G is becoming more and more popular. In this research-in-progress, we seek to solve security and privacy problems in 5G by applying Blockchain technology to secure 5G connections. The research will consist of an interdisciplinary team of researchers from Illinois State University (ISU) and non-academic-industry partners. During the study, we build a prototype that solves problems in agriculture and healthcare. A private 5G network is installed at ISU. Moisture sensors and IoT devices are installed at the university fa...
On the Performance of Blockchain-enabled RAN-as-a-service in Beyond 5G Networks
ArXiv, 2021
Blockchain (BC) technology can revolutionize the future of communications by enabling decentralized and open sharing networks. In this paper, we propose the application of BC to facilitate Mobile Network Operators (MNOs) and other players such as Verticals or Over-The-Top (OTT) service providers to exchange Radio Access Network (RAN) resources (e.g., infrastructure, spectrum) in a secure, flexible and autonomous manner. In particular, we propose a BC-enabled reverse auction mechanism for RAN sharing and dynamic users’ service provision in Beyond 5G networks, and we analyze its potential advantages with respect to current service provisioning and RAN sharing schemes. Moreover, we study the delay and overheads incurred by the BC in the whole process, when running over both wireless and wired interfaces.
Blockchain-enabled Network Sharing for O-RAN
ArXiv, 2021
The innovation provided by network virtualization in 5G, together with standardization and openness boosted by the Open Radio Access Network (O-RAN) Alliance, has paved the way to a collaborative future in cellular systems, driven by flexible network sharing. Such advents are expected to attract new players like content providers and verticals, increasing competitiveness in the telecom market. However, scalability and trust issues are expected to arise, given the criticality of ownership traceability and resource exchanging in an open RAN sharing ecosystem. To address that, we propose the integration of Blockchain (BC) technology for enabling mobile operators (OPs) and other players to exchange RAN resources (e.g., infrastructure, spectrum usage) in the form of virtual network functions (VNF) autonomously and dynamically. BC will provide automation, robustness, trustworthiness, and reliability to mobile networks, so that confidence is generated in an open RAN environment. In particu...
International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2022
People have grown socially dependent on the internet as a result of its tremendous convenience and increased influence. Fifth-generation wireless networks, or 5G, are a game-changing technology standard in mobile telecommunications that promises to be 20Gbps faster than current 4G technology. One of the main goals of 5g internet is to I deliver higher multi-Gbps peak data speeds, (ii) ultra low latency, (iii) more reliability, (iv) massive network capacity, (v) increased availability, (vi) higher performance, and (vii) improved efficiency. 5g (Fifth-generation wireless networks) is the most recent iteration of cellular technology. The blockchain technology, on the other hand, is one of the contentious technological enablers that addresses the majority of the present restrictions and offers the functional standards for 5G. Making the best possible use of the tools and resources at hand is essential for creating smart cities. In this paper, we first examine how blockchain might help to solve the difficult problems posed by 5G, and then we discuss potential future applications and research possibilities. I. INTRODUCTION Blockchain is a decentralized, unchangeable database that makes it easier to record and track commercial transactions [1]. A distributed ledger is a specific kind of blockchain. DLT, or distributed ledger technology, enables the sharing of records among numerous computers, or "nodes." A node can be any blockchain user, but it requires a lot of computing power to run. Nodes store data in the ledger and check, authorize, and save it. This contrasts with conventional record-keeping techniques, which preserve data in a single location, such a computer server [2]. Two research scientist, W. Scott Stornetta and Stuart Haber discussed about the blockchain technology first time in 1991. To ensure that digital documents could not be altered or retroactively time-stamped, they sought to provide a computationally feasible approach [3]. Researchers have suggested using blockchain to solve the problems with 5G since it can provide transparency, data reliability, trustworthiness, and immutability in a distributed setting [4]. By providing data provenance, authenticity, accountability, immutability, and non-repudiation for every user, blockchain enables users of 5G IoT networks to connect and transact (save and retrieve data) [5]. Fifth-generation wireless technology, also known as 5G, has now supplanted 4G in the wireless technology race due to an exponential rise in customer demand [6]. In intelligent networked communication environments, the fifth generation of mobile technology, or 5G, connects people, things, data, apps, transportation systems, and cities. The networks analyze extraordinarily high volumes of data with little lag time, reliably connect a very large number of devices, and transfer enormous amounts of data much more quickly [7]. II. LITERATURE REVIEW This section classifies some of the researchers with their concepts and achievements. 1) Blockchain for 5G: Opportunities and Challenges: Abdulla Chaer, Khaled salah, Claudio lima, Partha Pratim Ray, Tarek Sheltami, 2019. In this research paper, they highlighted decentralized storage of 5g and their services, opportunities which support smart contract elements to develop security, trusted oracle and ecosystem.
Widening Blockchain Technology toward Access Control for Service Provisioning in Cellular Networks
Sensors
The attention on blockchain technology (BCT) to create new forms of relational reliance has seen an explosion of new applications and initiatives, to assure decentralized security and trust. Its potential as a game-changing technology relates to how data gets distributed and replicated over several organizations and countries. This paper provides an introduction to BCT, as well as a review of its technological aspects. A concrete application of outsource access control and pricing procedures in cellular networks, based on a decentralized access control-as-a-service solution for private cellular networks, is also presented. The application can be used by service and content providers, to provide new business models. The proposed method removes the single point of failure from conventional centralized access control systems, increasing scalability while decreasing operational complexity, regarding access control and pricing procedures. Design and implementation details of the new meth...
BEAT: Blockchain-Enabled Accountable Infrastructure Sharing in 6G and Beyond
ArXiv, 2021
It is widely expected that future networks of 6G and beyond will deliver on the unachieved goals set by 5G. Technologies such as Internet of Skills and Industry 4.0 will become stable and viable, as a direct consequence of networks that offer sustained and reliable mobile performance levels. The primary challenges for future technologies are not just low-latency and high-bandwidth. The more critical problem Mobile Service Providers (MSPs) will face will be in balancing the inflated demands of network connections and customers’ trust in the network service, that is, being able to interconnect billions of unique devices while adhering to the agreed terms of Service Level Agreements (SLAs). To meet these targets, it is self-evident that MSPs cannot operate in a solitary environment. They must enable cooperation among themselves in a manner that ensures trust, both between themselves as well as with customers. In this study, we present the BEAT (Blockchain-Enabled Accountable and Transp...