Elliptic K3 surfaces as dynamical models and their Hamiltonian monodromy (original) (raw)

Abstract

This note deals with Lagrangian fibrations of elliptic K3 surfaces and the associated Hamiltonian monodromy. The fibration is constructed through the Weierstraß normal form of elliptic surfaces. There is given an example of K3 dynamical models with the identity monodromy matrix around 12 elementary singular loci.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (13)

  1. W.P. Barth, K. Hulek, C. A. M. Peters, and A. Van de Ven, Compact Complex Surfaces, second ed., Springer-Verlag, Berlin-Heidelberg-New York, 2004.
  2. L. Bates and R. Cushman, Complete integrability beyond Liouville-Arnol'd, Rep. Math. Phys., 56(1), 77-91, 2005.
  3. A.V. Bolsinov, H.R. Dullin, and A.P. Veselov, Spectra of sol-manifolds: arith- metic and quantum monodromy, Commun. Math. Phys., 264, 583-611, 2006.
  4. R.H. Cushman and L.M. Bates, Global Aspects of Classical Integrable Systems, Birkhäuser Verlag, Basel-Boston-Berlin, 1997.
  5. J.J. Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math., 33(6), 687-706, 1980.
  6. H. Flaschka, A remark on integrable Hamiltonian Systems, Phy. Lett. A, 131(9), 505-508, 1988.
  7. A. Hurwitz, Vorlesungen über Allgemeine Funktionentheorie und Elliptiche Funktionen, 5. Auflage, Berlin-Heidelberg-New York-Barcelona-Hongkong- London-Mailand-Paris-Singapur-Tokio, Springer, 2000.
  8. A. Kas, Weierstrass normal forms and invariants of elliptic surfaces, Trans. Amer. Math. Soc., 225, 259-266, 1977.
  9. K. Kodaira, On compact analytic surfaces : I, II, III, Ann. of Math., 71, 111- 152, 1960; 77, 563-626, 1963; 78, 1-40, 1963.
  10. N.C. Leung and M. Symington, Almost toric symplectic four-manifolds, J. Sym- plectic Geom., 8(2), 143-187, 2010.
  11. D.G. Markushevich, Integrable symplectic structures on compact complex man- ifolds, Math. USSR-Sb., 59(2), 459-469, 1988.
  12. I. I. Pjatecki ȋ-Šapiro and I. R. Šafarevič, A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izvestija, 5(3), 547-588, 1971.
  13. B. Zhilinskií, Quantum monodromy and pattern formation, J. Phys. A, 43, 434033, 2010.