Application of Stereo-Digital Image Correlation to Full-Field 3-D Deformation Measurement of Intervertebral Disc (original) (raw)
Related papers
Journal of orthopaedic research : official publication of the Orthopaedic Research Society, 2015
Tissue strain is an important indicator of mechanical function, but is difficult to non-invasively measure in the intervertebral disc. The objective of this study was to generate a disc strain template, a 3D average of disc strain, of a group of human L4-L5 discs loaded in axial compression. To do so, magnetic resonance images of uncompressed discs were used to create an average disc shape. Next, the strain tensors were calculated pixel-wise by using a previously developed registration algorithm. Individual disc strain tensor components were then transformed to the template space and averaged to create the disc strain template. The strain template reduced individual variability while highlighting group trends. For example, higher axial and circumferential strains were present in the lateral and posterolateral regions of the disc, which may lead to annular tears. This quantification of group-level trends in local 3D strain is a significant step forward in the study of disc biomechani...
Muscles, ligaments and tendons journal, 2017
Introduction The spine deserves careful biomechanical investigation, because of the different types of degeneration deriving from daily stress, trauma, and hard and soft tissue pathologies. Many biomechanical studies evaluated the range of motion, structural stiffness of spine segments under different loading conditions, without addressing the strain distribution. Strain gauges have been used to measure strain in the vertebral body, in a pointwise way.What is currently missing is a method to measure the distribution of strain in the soft tissues (intervertebral discs and ligaments), and an integration between measurements in the hard and soft tissues. Digital Image Correlation (DIC) is a recently developed optical technique, which allows measuring the distribution of displacements and deformation in a contact-less way. It can provide a full-field view of the examined surface under load. DIC can therefore give a more complete knowledge of the biomechanics of the spine. Methods This s...
Journal of Biomechanical Engineering, 2012
Using a continuum approach for modeling the constitutive mechanical behavior of the intervertebral disk’s annulus fibrosus holds the potential for facilitating the correlation of morphology and biomechanics of this clinically important tissue. Implementation of a continuum representation of the disk’s tissues into computational models would yield a particularly valuable tool for investigating the effects of degenerative disease. However, to date, relevant efforts in the literature towards this goal have been limited due to the lack of a computationally tractable and implementable constitutive function. In order to address this, annular specimens harvested from a total of 15 healthy and degenerated intervertebral disks were tested under planar biaxial tension. Predictions of a strain energy function, which was previously shown to be unconditionally convex, were fit to the experimental data, and the optimized coefficients were used to modify a previously validated finite element model...