Editorial (a preface to a Special Issue of journal Applied Sciences on "Guided-Wave Optics") (original) (raw)

The waveguide effect

Journal of Applied Mechanics and Technical Physics, 1989

The main purpose of scattering theory is the study of qualitative features of scattered waves. In the present study we investigate anomalous effects of the type of the waveguide effect for scattering problems by one-dimensional periodic structures. According to the definition of R. M. Garipov, the waveguide effect consists of the existence of eigenwaves localized in the vicinity of the structure. The properties of these waves are described by generalized eigenfunctions, being solutions of problems for steady-state oscillations. We consider existence conditions and the possibility of a waveguide effect for one-dimensional periodic structures: for long waves on shallow water -a one-dimensional periodic underwater ridge of the plateau type; and for acoustic or electromagnetic waves -a one-dimensional periodic lattice of plates or smooth obstacles.* The general solution of the homogeneous Helmholtz equation with parameter ~, satisfying the periodicity condition along y with period 2v, is u(x,y) ~] [a~oxp(iky+ i Ix]c~)-~ ~ *The basic results of this study were presented at the 6th All-Union Congress on Theoretical and Applied Mechanics.

APPLICATIONS OF GUIDED WAVE PROPAGATION ON WAVEGUIDES WITH IRREGULAR CROSS-SECTION

Guided waves are interesting for Non-destructive Testing (NDT) since they offer the potential for rapid inspections of a large variety of structures. Analytical methods are well known for predicting properties of guided waves such as mode shapes and dispersion curves on regular geometries, e.g. plain plates or cylindrical structures. However these methods cannot be used to study guided wave propagation in waveguides having irregular cross-sectional geometries, such as railway lines, Tshape beams or stiffened plates. This thesis applies and develops a Semi-Analytical Finite Element (SAFE) method, which uses finite elements to represent the crosssection of the waveguide and a harmonic description along the propagation direction, to investigate the modal properties of structures with irregular cross-section. Two attractive applications have been investigated with the SAFE method, and the results are encouraging.

Wave Optics and Modern Physics: guidance manual for recitation

Manual provide a set of problems to nine recitation classes offered by the Physics department of the National Aerospace University “Kharkiv Aviation Institute”. Guidance embraces the following topics: “Wave Optics”, “Special Theory of Relativity”, “Thermal Radiation”, “Photons”, “Principles of Quantum Mechanics” and “Introduction to Nuclear Physics”. Each chapter is supplied by a table with basic equations. For english-speaking students.

Quantum-Mechanical Concepts in the Waveguides Theory

Zeitschrift für Naturforschung A, 1992

A Klein-Gordon-type equation is derived for the wave propagation in an ideal, uniform waveguide, and its quantum-mechanical interpretation is given. The "cross-section" concept is introduced for a waveguide and the power transmission factor is obtained by using standard methods of quantum mechanics. The spinorial formalism is also employed for deriving the equivalent Dirac-type equation, and the perturbation theory is applied for computing the frequency shifts. The general applicability of the quantum-mechanical concepts to the waveguides theory is discussed

On guided waves in photonic crystal waveguides

Contemporary Mathematics, 2003

The paper addresses the issue of existence of modes guided by linear defects in photonic crystals. Such modes can be created in spectral gaps of the bulk materials and are evanescent in the bulk.

Plasmonic waveguides: classical applications and quantum phenomena

Quién pensaría que llegaría el momento de escribir estos agradecimientos. No tanto por todo lo que supone, sino por todos obstáculos que ha habido por el camino... Cuántas horas pensando problemas de física (y de 'no' física) cuántas vueltas a qué escribir y cómo expresarlo... Y es que a mi modo de ver, si la fortuna te acompaña, uno de los mayores problemas que tiene aquel que hace una tesis, es enfrentarse a uno mismo. Afortunadamente en este respecto, he podido contar con la ayuda de muchas personas que me han hecho ese 'camino' más llevadero en muchos sentidos. Primeramente, quería agradecer enormemente a mis tutores Esteban y FJ, por el gran apoyo que me han dado durante estos años, por ofrecerme toda su compresión en los buenos y en los no tan buenos momentos y, sobre todo, por haberme desvelado las pautas para hacer buena investigación. También quiero agradecer todo el apoyo científico, y no sólo científico, recibido por parte del resto del grupo de Nanofotónica de la UAM y Zaragoza: Maxim,