Cross-Domain Sentiment Classification via a Bifurcated-LSTM (original) (raw)

Learning Domain Representation for Multi-Domain Sentiment Classification

Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Training data for sentiment analysis are abundant in multiple domains, yet scarce for other domains. It is useful to leveraging data available for all existing domains to enhance performance on different domains. We investigate this problem by learning domain-specific representations of input sentences using neural network. In particular, a descriptor vector is learned for representing each domain, which is used to map adversarially trained domaingeneral Bi-LSTM input representations into domain-specific representations. Based on this model, we further expand the input representation with exemplary domain knowledge, collected by attending over a memory network of domain training data. Results show that our model outperforms existing methods on multidomain sentiment analysis significantly, giving the best accuracies on two different benchmarks.

Multi-task Learning for Target-Dependent Sentiment Classification

Advances in Knowledge Discovery and Data Mining, 2019

Detecting and aggregating sentiments toward people, organizations, and events expressed in unstructured social media have become critical text mining operations. Early systems detected sentiments over whole passages, whereas more recently, target-specific sentiments have been of greater interest. In this paper, we present MTTDSC, a multi-task target-dependent sentiment classification system that is informed by feature representation learnt for the related auxiliary task of passage-level sentiment classification. The auxiliary task uses a gated recurrent unit (GRU) and pools GRU states, followed by an auxiliary fully-connected layer that outputs passage-level predictions. In the main task, these GRUs contribute auxiliary per-token representations over and above word embeddings. The main task has its own, separate GRUs. The auxiliary and main GRUs send their states to a different fully connected layer, trained for the main task. Extensive experiments using two auxiliary datasets and three benchmark datasets (of which one is new, introduced by us) for the main task demonstrate that MTTDSC outperforms state-of-the-art baselines. Using word-level sensitivity analysis, we present anecdotal evidence that prior systems can make incorrect target-specific predictions because they miss sentiments expressed by words independent of target.

Transfer Learning in Sentiment Classification with Deep Neural Networks

Communications in Computer and Information Science, 2019

Cross-domain sentiment classifiers aim to predict the polarity (i.e. sentiment orientation) of target text documents, by reusing a knowledge model learnt from a different source domain. Distinct domains are typically heterogeneous in language, so that transfer learning techniques are advisable to support knowledge transfer from source to target. Deep neural networks have recently reached the state-of-the-art in many NLP tasks, including in-domain sentiment classification, but few of them involve transfer learning and cross-domain sentiment solutions. This paper moves forward the investigation started in a previous work [1], where an unsupervised deep approach for text mining, called Paragraph Vector (PV), achieved cross-domain accuracy equivalent to a method based on Markov Chain (MC), developed ad hoc for crossdomain sentiment classification. In this work, Gated Recurrent Unit (GRU) is included into the previous investigation, showing that memory units are beneficial for cross-domain when enough training data are available. Moreover, the knowledge models learnt from the source domain are tuned on small samples of target instances to foster transfer learning. PV is almost unaffected by fine-tuning, because it is already able to capture word semantics without supervision. On the other hand, fine-tuning boosts the crossdomain performance of GRU. The smaller is the training set used, the greater is the improvement of accuracy.

Combination of Domain Knowledge and Deep Learning for Sentiment Analysis

Lecture Notes in Computer Science, 2017

The emerging technique of deep learning has been widely applied in many different areas. However, when adopted in a certain specific domain, this technique should be combined with domain knowledge to improve efficiency and accuracy. In particular, when analyzing the applications of deep learning in sentiment analysis, we found that the current approaches are suffering from the following drawbacks: (i) the existing works have not paid much attention to the importance of different types of sentiment terms, which is an important concept in this area; and (ii) the loss function currently employed does not well reflect the degree of error of sentiment misclassification. To overcome such problem, we propose to combine domain knowledge with deep learning. Our proposal includes using sentiment scores, learnt by quadratic programming, to augment training data; and introducing penalty matrix for enhancing the loss function of cross entropy. When experimented, we achieved a significant improvement in classification results.

Toward a multitask aspect-based sentiment analysis model using deep learning

IAES International Journal of Artificial Intelligence (IJ-AI)

Sentiment analysis or opinion mining is used to understand the community’s opinions on a particular product. This is a system of selection and classification of opinions on sentences or documents. At a more detailed level, aspect-based sentiment analysis makes an effort to extract and categorize sentiments on aspects of entities in opinion text. In this paper, we propose a novel supervised learning approach using deep learning techniques for a multitasking aspect-based opinion mining system that supports four main subtasks: extract opinion target, classify aspect, classify entity (category) and estimate opinion polarity (positive, neutral, negative) on each extracted aspect of the entity. We have used a part-of-speech (POS) layer to define the words’ morphological features integrated with GloVe word embedding in the previous layer and fed to the convolutional neural network_bidirectional long-short term memory (CNN_BiLSTM) stacked construction to improve the model’s accuracy in the ...

Domain Adaptation for Large-Scale Sentiment Classification: A Deep Learning Approach

The exponential increase in the availability of online reviews and recommendations makes sentiment classification an interesting topic in academic and industrial research. Reviews can span so many different domains that it is difficult to gather annotated training data for all of them. Hence, this paper studies the problem of domain adaptation for sentiment classifiers, hereby a system is trained on labeled reviews from one source domain but is meant to be deployed on another. We propose a deep learning approach which learns to extract a meaningful representation for each review in an unsupervised fashion. Sentiment classifiers trained with this high-level feature representation clearly outperform state-of-the-art methods on a benchmark composed of reviews of 4 types of Amazon products. Furthermore, this method scales well and allowed us to successfully perform domain adaptation on a larger industrial-strength dataset of 22 domains.

Topic Driven Adaptive Network for Cross-Domain Sentiment Classification

2021

Cross-domain sentiment classification has been a hot spot these years, which aims to learn a reliable classifier using labeled data from the source domain and evaluate it on the target domain. In this vein, most approaches utilized domain adaptation that maps data from different domains into a common feature space. To further improve the model performance, several methods targeted to mine domain-specific information were proposed. However, most of them only utilized a limited part of domain-specific information. In this study, we first develop a method of extracting domain-specific words based on the topic information. Then, we propose a Topic Driven Adaptive Network (TDAN) for cross-domain sentiment classification. The network consists of two subnetworks: semantics attention network and domain-specific word attention network, the structures of which are based on transformers. These sub-networks take different forms of input and their outputs are fused as the feature vector. Experim...

Social Media Cross-Source and Cross-Domain Sentiment Classification

International Journal of Information Technology & Decision Making, 2019

Due to the expansion of Internet and Web 2.0 phenomenon, there is a growing interest in sentiment analysis of freely opinionated text. In this paper, we propose a novel cross-source cross-domain sentiment classification, in which cross-domain-labeled Web sources (Amazon and Tripadvisor) are used to train supervised learning models (including two deep learning algorithms) that are tested on typically nonlabeled social media reviews (Facebook and Twitter). We explored a three-step methodology, in which distinct balanced training, text preprocessing and machine learning methods were tested, using two languages: English and Italian. The best results were achieved using undersampling training and a Convolutional Neural Network. Interesting cross-source classification performances were achieved, in particular when using Amazon and Tripadvisor reviews to train a model that is tested on Facebook data for both English and Italian.

Combination of domain knowledge and deep learning for sentiment analysis of short and informal messages on social media

International Journal of Computational Vision and Robotics

Sentiment analysis has been emerging recently as one of the major natural language processing (NLP) tasks in many applications. Especially, as social media channels (e.g. social networks or forums) have become significant sources for brands to observe user opinions about their products, this task is thus increasingly crucial. However, when applied with real data obtained from social media, we notice that there is a high volume of short and informal messages posted by users on those channels. This kind of data makes the existing works suffer from many difficulties to handle, especially ones using deep learning approaches. In this paper, we propose an approach to handle this problem. This work is extended from our previous work, in which we proposed to combine the typical deep learning technique of Convolutional Neural Networks with domain knowledge. The combination is used for acquiring additional training data augmentation and a more reasonable loss function. In this work, we further improve our architecture by various substantial enhancements, including negation-based data augmentation, transfer learning for word embeddings, the combination of word-level embeddings and character-level embeddings, and using multitask learning technique for attaching domain knowledge rules in the learning process. Those enhancements, specifically aiming to handle short and informal messages, help us to enjoy significant improvement in performance once experimenting on real datasets.

Sentiment Classification using Attention based Gated-CNN with Deep Recurrent Neural Model

TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, 2021

Sentiment analysis received a lot of attention recently due to its potential use in business intelligence. Understanding variable length sentences to extract the sentimental context is the main challenge of this concept. Our proposed models are moderations of a deep neural model named comprehensive attention recurrent model [5]. A new layer of attention mechanism and replacement of LSTM with gated-CNN have been introduced to make learning of CA model [5] faster and efficient. IMDB movie review sentiment-labelled dataset has been used in our experiments. Our paper solely focuses on the comparison of performances among proposed and inspired models. Experimental results imply that accuracy and precision of our proposed models are better compared to the state-of-the-art CA model.