Limonium homoploid and heteroploid intra- and interspecific crosses unveil seed anomalies and neopolyploidy related to sexual and/or apomictic reproduction (original) (raw)

Abstract

Apomixis is a form of asexual reproduction that consists in cloning through seeds. In Limonium (Plumbaginaceae) species present a pollen-stigma dimorphism linked to a sporophytic self-incompatibility system associated with sexual and/ or apomictic reproductive modes. Previous work in other genera suggests that the emergence of apomixis is associated with hybridization and/or polyploidy. In this study, our goal was to test the ability of diploid and tetraploid species to hybridize and to evaluate the variate outcomes from these crosses. To achieve this, sexual diploid (L. nydeggeri, L. ovalifolium) and facultative apomict tetraploid (L. binervosum, L. dodartii) plants from cultivated material, previously cytogenetically and reproductively characterized, were used for experimental intra-and interspecific crosses. Genome sizes, ploidy levels and morphology were examined in the resulting progenies. Results showed a high production of viable seeds in particular in plants from tetraploid × diploid (heteroploid) crosses. In these crosses, some seedlings exhibited pleiocotyly (tricotyl, tetracotyl), while others showed polyembryony. In both homoploid (diploid × diploid) and heteroploid (tetraploid × diploid) crosses, most of the offspring plants were morphologically and in their ploidy similar to the female receiver, although some morphological abnormalities were found. Molecular progeny tests using the nrDNA ITS1-ITS2 sequence demonstrated an astounding range of diploid offspring plants originated from diploid × diploid crosses that were either genetically similar or distinct from parental plants. Although in intraspecific crosses most of the resulting progeny was diploid, one triploid plant was formed. Moreover, in homoploid interspecific crosses, neopolyploids (two tetraploid plants) were produced. Progeny plants from heteroploid crosses always showed nrDNA ITS1-ITS2 sequences identical to the parental plant used as female receiver. In conclusion, diploid homoploid crosses presented genetically diverse offspring arising from sexual reproduction. By contrast, heteroploid crosses generated clonal, maternal (apomictic) offspring.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (62)

  1. TAXON 67 (6) • December 2018: 1153-1162
  2. Conceição & al. • Limonium intra-and interspecific hybridization Abbott, R., Albach, D., Ansell, S., Arntzen, J.W., Baird, S.J.E., Bierne, N., Boughman, J., Brelsford, A., Buerkle, C.A., Buggs, R. & Butlinet, R.K. 2013. Hybridization and speciation. J. Evol. Biol. 26: 229-246. https://doi.org/10.1111/j.1420-9101.2012.02599.x
  3. Asker, S. & Jerling, L. 1992. Apomixis in plants. Boca Raton: CRC Press.
  4. Baker, H.G. 1966. The evolution, functioning and breakdown of hetero- morphic incompatibility systems. I. The Plumbaginaceae. Evolution (Lancaster) 20: 349-368. https://doi.org/10.1111/j.1558-5646.1966\. tb03371.x
  5. Battaglia, E. 1989. Embryological question. 14. The evolution of the female gametophyte of angiosperms: An interpretative key. Ann. Bot. (Oxford) 47: 7-144.
  6. Böcher, T. 1951. Cytological and empbryological studies in the amphi- apomictic Arabis holboellii complex. Biol. Skr. 6: 1-58.
  7. Caperta, A.D., Castro, S., Loureiro, J., Róis, A.S., Conceição, S., Costa, J., Rhazi, L., Espírito Santo, D. & Arsénio, P. 2017. Biogeographical, ecological and ploidy variation in related asexual and sexual Limonium taxa (Plumbaginaceae). Bot. J. Linn. Soc. 183: 75-93. https://doi.org/10.1111/boj.12498
  8. Carman, J.G. 1997. Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and poly- embryony. Biol. J. Linn. Soc. 61: 51-94. https://doi.org/10.1111 /j.1095-8312.1997.tb01778.x
  9. Chapman, H. & Bicknell, R. 2000. Recovery of a sexual and an apomic- tic hybrid from crosses between the facultative apomicts Hieracium caespitosum and H. praealtum. New Zealand J. Ecol. 24: 81-85.
  10. Conceição, S.I.R., Róis, A.S. & Caperta, A.D. In press. Utilization of Limonium ex situ collections to study the occurrence of apomixis. 8 th Eurogard -Eight European botanic gardens congress: "Botanic gardens, people and plants for a sustainable world" in the session "Understanding plant processes". Lisbon (Portugal), May 7th-11th. Reitoria da Universidade de Lisboa
  11. Conner, J.K. & Agrawal, A.A. 2005. Mechanisms of constraints: The contributions of selection and genetic variance to the maintenance of cotyledon number in wild radish. J. Evol. Biol. 18: 238-242. https://doi.org/10.1111/j.1420-9101.2004.00821.x
  12. Cortinhas, A., Erben, M., Paula Paes, A., Espirito Santo, D., Guara- Requena, M. & Caperta, A.D. 2015. Taxonomic complexity in the halophyte Limonium vulgare and related taxa (Plumbaginaceae): Insights from analysis of morphological, reproductive and karyo- logical data. Ann. Bot. (Oxford) 115: 369-383. https://doi.org /10.1093/aob/mcu186
  13. Cowan, R., Ingrouille, M. & Lledó, M.D. 1998. The taxonomic treatment of agamosperms in the genus Limonium Mill. (Plumbaginaceae). Folia Geobot. 33: 353-366. https://doi.org/10.1007/BF03216212
  14. D'Amato, F. 1949. Triploidia e apomissia in Statice oleaefolia Scop. var. confusa Godr. Caryologia 2: 71-84. https://doi.org/10.1080/0 0087114.1949.10797527
  15. Dahlgren, K.V.O. 1916. Zytologische und embryologische Studien über die Reihen Primulales und Plumbaginales. Kungl. Svenska Vetensk. Akad. Handl. 56: 1-80.
  16. Dawson, H.J. & Ingrouille, M.J. 1995. A biometric survey of Limonium vulgare Miller and L. humile Miller in the British Isles. Watsonia 20: 239-254.
  17. De Storme, N. & Mason, A. 2014. Plant speciation through chromosome instability and ploidy change: Cellular mechanisms, molecular fac- tors and evolutionary relevance. Curr. Pl. Biol. 1: 10-33. https:// doi.org/10.1016/j.cpb.2014.09.002
  18. Doležel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysák, M.A., Nardi, L. & Obermayer, R. 1998. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann. Bot. (Oxford) 82: 17-26. https://doi.org/10.1093/oxfordjournals.aob.a010312
  19. Erben, M. 1978. Die Gattung Limonium im südwestmediterranen Raum. Mitt. Bot. Staatssamml. München 14: 361-631.
  20. Erben, M. 1979. Karyotype differentiation and its consequences in Mediterranean Limonium. Webbia 34: 409-417. https://doi.org/10 .1080/00837792.1979.10670178
  21. Erben, M. 1993. Limonium. Pp. 2-143 in: Castroviejo, S., Aedo, C., Cirujano S., Laínz, M., Montserrat, P., Morales, R., Muñoz- Garmendia, F., Navarro, C., Paiva, J. & Soriano, C. (eds.), Flora iberica, vol. 3. Madrid: Real Jardín Botánico, CSIC.
  22. Erben, M. 1999. Limonium nydeggeri, eine neue Art aus Südwestportu- gal. Sendtnera 6: 103-107.
  23. Falque, M., Keurentjes, J., Bakx-Schotman, T. & Van Dijk, P.J., 1998. Development and characterization of microsatellite markers in the sexual-apomictic complex Taraxacum officinale (dande- lion). Theor. Appl. Genet. 97: 283-292. https://doi.org/10.1007/ s001220050897
  24. Galbraith, D.W., Harkins, K.R., Maddox, J.M., Ayres, N.M., Sharma, D.P. & Firoozabady, E. 1983. Rapid flow cytomet- ric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051. https://doi.org/10.1126/science.220.4601.1049
  25. Greilhuber, J., Doležel, J., Lysak, M.A. & Bennett, M.D. 2005. The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents. Ann. Bot. (Oxford) 95: 255-260. https://doi.org/10.1093/aob/mci019
  26. Grimanelli, D. 2012. Epigenetic regulation of reproductive development and the emergence of apomixis in angiosperms. Curr. Opin. Pl. Biol. 15: 57-62. https://doi.org/10.1016/j.pbi.2011.10.002
  27. Hall, T. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98.
  28. Hjelmqvist, H. & Grazi F. 1964. Studies on variation in embryo sac development. Bot. Not. 117: 141-166.
  29. Hodač, L., Scheben, A.P., Hojsgaard, D., Paun, O. & Hörandl, E. 2014. ITS polymorphisms shed light on hybrid evolution in apo- mictic plants: A case study on the Ranunculus auricomus complex. PLoS ONE 9: e103003. https://doi.org/10.1371/journal.pone.0103003
  30. Hojsgaard, D. 2018. Transient activation of apomixis in sexual neotrip- loids may retain genomically altered states and enhance polyploid establishment. Frontiers Pl. Sci. 9: 230. http://doi.org/10.3389/ fpls.2018.00230
  31. Hojsgaard, D., Pellino, M., Sharbel, T.F. & Hörandl, E. 2015. Resolving genome evolution patterns in asexual plants. Pp. 119- 153 in: Hörandl, E. & Appelhans, M. (eds.), Next-generation se- quencing in plant systematics. Regnum Vegetabile 158. Königstein: Koeltz Scientific Books.
  32. Hörandl, E. 2013. Meiosis and the paradox of sex in nature. Pp. 17-39 in: Bernstein, C. & Bernstein, H. (eds.), Meiosis. London: InTech. https://doi.org/10.5772/56542
  33. Ingrouille, M.J. & Stace, C.A. 1986. The Limonium binervosum ag- gregate (Plumbaginaceae) in the British Isles. Bot. J. Linn. Soc. 92: 177-217. https://doi.org/10.1111/j.1095-8339.1986.tb01428.x
  34. Jang, T.S., Emadzade, K., Parker, J., Temsch, E.M., Leitch, A.R., Speta, F. & Weiss-Schneeweiss H. 2013. Chromosomal diversi- fication and karyotype evolution of diploids in the cytologically diverse genus Prospero (Hyacinthaceae). B. M. C. Evol. Biol. 13: 136. https://doi.org/10.1186/1471-2148-13-136
  35. Jang, T.S, Parker, J.S, Emadzade, K., Temsch, E.M., Leitch, A., Weiss-Schneeweiss, H. 2018. Multiple origins and nested cycles of hybridization result in high tetraploid diversity in the mono- cot Prospero. Frontiers Pl. Sci. 9: 433. https://doi.org/10.3389/ fpls.2018.00433
  36. Kantama, L., Sharbel, T.F., Schranz, M.E., Mitchell-Olds, T., De Vries, S. & De Jong, H. 2007. Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes. Proc. Natl. Acad. Sci. U.S.A 104: 14026-14031. https://doi.org/10.1073/pnas.0706647104
  37. Kirschner, J., Štěpánek, J., Mes, T.H.M., Den Nijs, J.C.M., Oosterveld, P., Štorchová H. & Kuperus P. 2003. Principal features of the cpDNA evolution in Taraxacum (Asteraceae, Lactuceae): A conflict with taxonomy. Pl. Syst. Evol. 239: 231-255. https://doi.org/10.1007/s00606-003-0002-5
  38. Klatt, S., Schinkel, C.C., Kirchheimer, B., Dullinger, S. & Hörandl, E. 2018. Effects of cold treatments on fitness and mode of reproduc- tion in the diploid and polyploid alpine plant Ranunculus kuepferi (Ranunculaceae). Ann. Bot. (Oxford) 121: 1287-1298. https://doi. org/10.1093/aob/mcy017
  39. Koltunow, A.M. 1993. Apomixis: Embryo sacs and embryos formed without meiosis or fertilization in ovules. Pl. Cell 5: 1425. https:// doi.org/10.1105/tpc.5.10.1425
  40. Koltunow, A.M. & Grossniklaus, U. 2003. Apomixis, a develop- mental perspective. Annual Rev. Pl. Biol. 54: 547-574. https://doi. org/10.1146/annurev.arplant.54.110901.160842
  41. Kubitzki, K. 1993. Plumbaginaceae. Pp. 523-530 in: Kubitzki, K., Rohwer, J. & Bittrich, V. (eds.), The families and genera of flow- ring plants, vol. 2, Flowering plants: Dicotyledons; Magnoliid, Hamamelid and Caryophyllid families. Berlin & Heidelberg: Springer. https://doi.org/10.1007/978-3-662-02899-5\_62
  42. Lo, E.Y., Stefanović, S. & Dickinson, T.A. 2010. Reconstructing re- ticulation history in a phylogenetic framework and the potential of allopatric speciation driven by polyploidy in an agamic complex in Crataegus (Rosaceae). Evolution (Lancaster) 64: 3593-3608. https://doi.org/10.1111/j.1558-5646.2010.01063.x
  43. Loureiro, J., Rodriguez, E., Doležel, J. & Santos, C. 2007. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Ann. Bot. (Oxford) 100: 875-888. https://doi. org/10.1093/aob/mcm152
  44. Naumova, T.N. 1993. Apomixis in angiosperms: Nucellar and integu- mentary embryony. Boca Raton: CRC Press.
  45. Ozias-Akins, P. & Van Dijk, P.J. 2007. Mendelian genetics of apomixis in plants. Annual Rev. Genet. 41: 509-537. https://doi.org/10.1146/ annurev.genet.40.110405.090511
  46. Paun, O., Greilhuber, J., Temsch, E.M. & Hörandl, E. 2006. Patterns, sources and ecological implications of clonal diversity in apomictic Ranunculus carpaticola (Ranunculus auricomus complex, Ranunculaceae). Molec. Ecol. 15: 897-910. https://doi. org/10.1111/j.1365-294X.2006.02800.x
  47. Peel, M.D., Carman, J.G. & Leblanc, O. 1997a. Megasporocyte cal- lose in apomictic buffelgrass, Kentucky bluegrass, Pennisetum squamulatum Fresen, Tripsacum L. and weeping lovegrass. Crop Sci. 37: 724-732. https://doi.org/10.2135/cropsci1997.0011183X0 03700030006x
  48. Peel, M.D., Carman, J.G., Liu, Z.W. & Wang, R.R.C. 1997b. Meiotic anomalies in hybrids between wheat and apomictic Elymus recti- setus (Nees in Lehm.) A. Löve & Connor. Crop Sci. 37: 717-723. https://doi.org/10.2135/cropsci1997.0011183X003700030005x
  49. Róis, A.S., Teixeira, G., Sharbel, T.F., Fuchs, J., Martins, S., Espírito-Santo, D. & Caperta, A.D. 2012. Male fertility ver- sus sterility, cytotype, and DNA quantitative variation in seed production in diploid and tetraploid sea lavenders (Limonium sp., Plumbaginaceae) reveal diversity in reproduction modes. Sexual Pl. Reprod. 25: 305-318. https://doi.org/10.1007/s00497-012-0199-y
  50. Róis, A.S., López, C.M.R., Cortinhas, A., Erben, M., Espírito- Santo, D., Wilkinson, M.J. & Caperta, A.D. 2013. Epigenetic rather than genetic factors may explain phenotypic divergence between coastal populations of diploid and tetraploid Limonium spp. (Plumbaginaceae) in Portugal. B. M. C. Evol. Biol. 13: 205. https://doi.org/10.1186/1471-2229-13-205
  51. Róis, A.S., Sádio, F., Paulo, O.S., Teixeira, G., Paes, A.P., Espírito- Santo, D., Sharbel, T.F. & Caperta, A.D. 2016. Phylogeography and modes of reproduction in diploid and tetraploid halophytes of Limonium species (Plumbaginaceae): Evidence for a pattern of geographical parthenogenesis. Ann. Bot. (Oxford) 117: 37-50. https://doi.org/10.1093/aob/mcv138
  52. Romanov, I.D. 1957. Embryo sac in the genus Tulipa. Compt.-Rend. (Dokl.) Acad. Sci. URSS 115: 1025-1027.
  53. Savidan, Y. 2007. Apomixis in higher plants. Pp. 15-22 in: Hörandl, E., TAXON 67 (6) • December 2018: 1153-1162
  54. Conceição & al. • Limonium intra-and interspecific hybridization Grossniklaus, U., Van Dijk, P.J. & Sharbel, T.F. (eds.), Apomixis: Evolution, mechanisms and perspectives. Ruggell: Gantner.
  55. Schinkel, C.C., Kirchheimer, B., Dullinger, S., Geelen, D., De Storme, N. & Hörandl, E. 2017. Pathways to polyploidy: Indications of a female triploid bridge in the alpine species Ranunculus kuep- feri (Ranunculaceae). Pl. Syst. Evol. 303: 1093-1108. https://doi. org/10.1007/s00606-017-1435-6
  56. Schranz, M.E., Dobeš, C., Koch, M.A. & Mitchell-Olds, T. 2005. Sexual reproduction, hybridization, apomixis, and polyploidization in the genus Boechera (Brassicaceae). Amer. J. Bot. 92: 1797-1810. https://doi.org/10.3732/ajb.92.11.1797
  57. Soltis, D.E., Visger, C.J. & Soltis, P.S. 2014. The polyploidy revolution then … and now: Stebbins revisited. Amer. J. Bot. 101: 1057-1078. https://doi.org/10.3732/ajb.1400178
  58. Talent, N. & Dickinson, T.A. 2007. Apomixis and hybridization in Rosaceae subtribe Pyrinae Dumort.: A new tool promises new insights. Pp. 301-316 in: Hörandl, E., Grossniklaus, U., Van Dijk, P.J. & Sharbel, T.F. (eds.), Apomixis: Evolution, mechanisms and perspectives. Ruggell: Gantner.
  59. Tas, & Van Dijk, P.J. 1999. Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity 83: 707-714. https://doi.org/10.1046/j.1365-2540.1999.00619.x
  60. Van Dijk, P.J., Tas, I.C.Q., Falque, M. & Bakx-Schotman, T. 1999. Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity 83: 715-721. https://doi. org/10.1046/j.1365-2540.1999.00620.x
  61. White, T.J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and di- rect sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315-322 in: Innis, M.A, Gelfand, D.H., Sninsky, J.J & White, T.J. (eds.), PCR protocols: A guide to methods and applications. San Diego: Academic Press.
  62. Wvan, C. 1981. Syncotyly, pseudomonotyly, schizocotyly and pleicotyly within some dicotyledons. Dodonaea 49: 166-183