Involvement of epigenetic modification of TERT promoter in response to all-trans retinoic acid in ovarian cancer cell lines (original) (raw)

Methylation of tumor suppressor genes in ovarian cancer

Experimental and therapeutic medicine, 2012

Aberrant methylation of gene promoter regions is one of the mechanisms for inactivation of tumor suppressor genes in human malignancies. In this study, the methylation pattern of 24 tumor suppressor genes was analyzed in 75 samples of ovarian cancer using the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assay. Of the 24 tumor suppressor genes examined, aberrant methylation was observed in 17. The three most frequently methylated genes were CDKN2B, CDH13 and RASSF1, followed by ESR1 and MLH1. Methylation frequencies ranged from 1.3% for CDKN2A, RARβ, CASP8, VHL and TP73 to 24% for CDKN2B. The corresponding normal DNA from each patient was also investigated. Methylation was detected in tumors, although not in normal tissues, with the exception of two samples, indicating aberrant methylation in tumors. Clear cell carcinoma samples exhibited a higher frequency of CDKN2B promoter hypermethylation compared to those of other histological types (P=0.05). O...

Distinct DNA Methylation Profiles in Ovarian Tumors: Opportunities for Novel Biomarkers

International Journal of Molecular Sciences

Aberrant methylation of multiple promoter CpG islands could be related to the biology of ovarian tumors and its determination could help to improve treatment strategies. DNA methylation profiling was performed using the Methylation Ligation-dependent Macroarray (MLM), an array-based analysis. Promoter regions of 41 genes were analyzed in 102 ovarian tumors and 17 normal ovarian samples. An average of 29% of hypermethylated promoter genes was observed in normal ovarian tissues. This percentage increased slightly in serous, endometrioid, and mucinous carcinomas (32%, 34%, and 45%, respectively), but decreased in germ cell tumors (20%). Ovarian tumors had methylation profiles that were more heterogeneous than other epithelial cancers. Unsupervised hierarchical clustering identified four groups that are very close to the histological subtypes of ovarian tumors. Aberrant methylation of three genes (BRCA1, MGMT, and MLH1), playing important roles in the different DNA repair mechanisms, were dependent on the tumor subtype and represent powerful biomarkers for precision therapy. Furthermore, a promising relationship between hypermethylation of MGMT, OSMR, ESR1, and FOXL2 and overall survival was observed. Our study of DNA methylation profiling indicates that the different histotypes of ovarian cancer should be treated as separate diseases both clinically and in research for the development of targeted therapies.

DNA methylation profiles in ovarian cancer: Implication in diagnosis and therapy (Review)

Molecular Medicine Reports, 2014

Genetic alterations alone cannot account for the complexity of ovarian cancer. The potential reversibility of epigenetic mechanisms makes them attractive candidates for the prevention and/or treatment of ovarian carcinoma. Detection of the epigenetic signature of each cancer cell may be useful in the identification of candidate biomarkers for disease detection, classification and monitoring and may also facilitate personalized cancer treatment. In ovarian cancer, in addition to other non-gynaecological cancers, two opposite epigenetic phenomena occur. The first involves an overall global decrease in DNA methylation of heterochromatin leading to demethylation of several oncogenes, while the second involves specific CpG island hypermethylation associated with the promoters of tumor suppressor genes. Early studies focused on the methylation patterns of single genes associated with tumorigenesis. However, newer genome-wide methods have identified a group of genes whose regulation is altered by DNA methylation during ovarian cancer progression.

Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer

The Indian journal of medical research, 2014

Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumour suppressor genes. O 6-methyguanine-DNA methyltransferase (MGMT) is a DNA repair gene that removes mutagenic and cytotoxic adducts from the O 6 -position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression has been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human epithelial ovarian carcinoma. A total of 88 epithelial ovarian cancer (EOC) tissue samples, 14 low malignant potential (LMP) tumours and 20 benign ovarian tissue samples were analysed for MGMT promoter methylation by nested methylation-specific polymerase chain reaction (MSP) after bisulphite modification of DNA. A subset of 64 ...

Differential TERT Promoter Methylation and Response to 5-Aza-2'-deoxycytidine in Acute Myeloid Leukemia Cell Lines: TERT Expression, Telomerase Activity, Telomere Length, and Cell Death

The catalytic subunit of human telomerase (TERT) is highly expressed in cancer cells, and correlates with complex cytogenetics and disease severity in acute myeloid leukemia (AML). The TERT promoter is situated within a large CpG island, suggesting that expression is methylation-sensitive. Studies suggest a correlation between hypermethylation and TERT overexpression. We investigated the relationship between TERT promoter methylation and expression and telomerase activity in human leukemia and lymphoma cell lines. DAC-induced demethylation and cell death were observed in all three cell lines, as well as telomere shortening in HL-60 cells. DAC treatment reduced TERT expression and telomerase activity in OCI/AML3 and HL-60 cells, but not in U937 cells. Control U937 cells expressed lower levels of TERT mRNA, carried a highly methylated TERT core promoter, and proved more resistant to DAC-induced repression of TERT expression and cell death. AML patients had significantly lower methylation levels at several CpGs than ‘‘well elderly’’ individuals. This study, the first to investigate the relationship between TERT methylation and telomerase activity in leukemia cells, demonstrated a differential methylation pattern and response to DAC in three AML cell lines. We suggest that, although DAC treatment reduces TERT expression and telomerase activity, this is unlikely to occur via direct demethylation of the TERT promoter. However, further investigations on the regions spanning CpGs 7–12 and 14–16 may reveal valuable information regarding transcriptional regulation of TERT.

Aberrant promoter methylation of multiple genes in malignant ovarian tumors and in ovarian tumors with low malignant potential

Cancer, 2006

Aberrant methylation of CpG islands acquired in tumor cells in promoter regions is one method for loss of gene function. We determined the frequency of aberrant promoter methylation (referred to as methylation) of the genes retinoic acid receptor ␤-2 (RAR␤), tissue inhibitor of metalloproteinase 3 (TIMP-3), p16 INK4a , O 6 -methylguanine-DNA-methyltransferase (MGMT), death-associated protein kinase (DAPK), E-cadherin (ECAD), p14 ARF , and glutathione S-transferase P1 (GSTP1) in 107 resected primary non-small cell lung cancers (NSCLCs) and in 104 corresponding nonmalignant lung tissues by methylation-specific PCR. Methylation in the tumor samples was detected in 40% for RAR␤, 26% for TIMP-3, 25% for p16 INK4a , 21% for MGMT, 19% for DAPK, 18% for ECAD, 8% for p14 ARF , and 7% for GSTP1, whereas it was not seen in the vast majority of the corresponding nonmalignant tissues. Moreover, p16 INK4a methylation was correlated with loss of p16 INK4a expression by immunohistochemistry. A total of 82% of the NSCLCs had methylation of at least one of these genes; 37% of the NSCLCs had one gene methylated, 22% of the NSCLCs had two genes methylated, 13% of the NSCLCs had three genes methylated, 8% of the NSCLCs had four genes methylated, and 2% of the NSCLCs had five genes methylated. Methylation of these genes was correlated with some clinicopathological characteristics of the patients. In comparing the methylation patterns of tumors and nonmalignant lung tissues from the same patients, there were many discordancies where the genes methylated in nonmalignant tissues were not methylated in the corresponding tumors. This suggests that the methylation was occurring as a preneoplastic change. We conclude that these findings confirm in a large sample that methylation is a frequent event in NSCLC, can also occur in smoking-damaged nonmalignant lung tissues, and may be the most common mechanism to inactivate cancer-related genes in NSCLC.

DNA Methylation Profiles of Ovarian Epithelial Carcinoma Tumors and Cell Lines

PLoS ONE, 2010

Background: Epithelial ovarian carcinoma is a significant cause of cancer mortality in women worldwide and in the United States. Epithelial ovarian cancer comprises several histological subtypes, each with distinct clinical and molecular characteristics. The natural history of this heterogeneous disease, including the cell types of origin, is poorly understood. This study applied recently developed methods for high-throughput DNA methylation profiling to characterize ovarian cancer cell lines and tumors, including representatives of three major histologies.

Gene methylation of human ovarian carcinoma stromal progenitor cells promotes tumorigenesis

Journal of Translational Medicine, 2015

Background: This study aimed to investigate whether the DNA methylation of human ovarian carcinoma stromal progenitor cells (OCSPCs) could promote the tumorigenesis of ovarian carcinoma. Methods: OCSPCs were first isolated from fresh tumor tissues and ascites of ovarian cancer patients. In vivo and in vitro experiments on the effect of the OCSPCs on tumorigenesis and the effects of DNA demethylation on the OCSPCs were then performed. Results: The OCSPCs possessed self-renewal and multipotent differentiation capacity with elevated expressions of OCT4, NANOG, BMP2, BMP4, Rex-1, AC133 and TGF-β. The OCSPCs, when combined with tumor cells in vivo could promote tumor growth. The methylation profiles of tumor suppressor genes (TSGs) were significantly higher in the OCSPCs than in ovarian cancer cells (p < 0.001). 5-aza-2-dC could alter the methylation levels of TSGs in OCSPCs and also inhibit the tumor promoting capabilities of the OCSPCs by decreasing the proliferation of tumors cells. The expression levels of TSGs were re-expressed by 5-aza-2-dC to inhibit the self-renewal and growth of OCSPCs. Conclusions: OCSPCs with decreased TSG expressions in the ovarian tumor microenvironment were able to promote tumorigenesis which could be reversed by DNA demethylation. DNA demethylation reversing the expression of TSGs in OCSPCs may represent a potential therapeutic target for ovarian cancer.