Fragmenting fragments: landscape genetics of a subterranean rodent (Mammalia, Ctenomyidae) living in a human-impacted wetland (original) (raw)

Influence of environmental heterogeneity on the distribution and persistence of a subterranean rodent in a highly unstable landscape

Genetica, 2016

In this study we combine information from landscape characteristics, demographic inference and species distribution modelling to identify environmental factors that shape the genetic distribution of the fossorial rodent Ctenomys. We sequenced the mtDNA control region and amplified microsatellites from 27 populations distributed across the Iberá wetland ecosystem. Hierarchical Bayesian modelling was used to construct phylogenies and estimate divergence times. We developed species distribution models to determine what climatic variables and soil parameters predicted species presence by comparing the current to the historic and predicted future distribution of the species. Finally, we explore the impact of environmental variables on the genetic structure of Ctenomys based on current and past species distributions. The variables that consistently correlated with the predicted distribution of the species and explained the observed genetic differentiation among populations included the distribution of well-drained sandy soils and temperature seasonality. A core region of stable suitable habitat was identified from the Last Interglacial, which is projected to remain stable into the future. This region is also the most genetically diverse and is currently under strong anthropogenic pressure. Results reveal complex demographic dynamics, which have been in constant change in both time and space, and are likely linked to the evolution of the Paraná River. We suggest that any alteration of soil properties (climatic or anthropic) may significantly impact the availability of suitable habitat and consequently the ability of individuals to disperse. The protection of this core stable habitat is of prime importance given the increasing levels of human disturbance across this wetland system and the threat of climate change.

Population structure and landscape genetics in the endangered subterranean rodent Ctenomys porteousi

Conservation Genetics, 2012

In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8-27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species' distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.

Influences of landscape characteristics and historical barriers on the population genetic structure in the endangered sand-dune subterranean rodent Ctenomys australis

Genetica, 2020

Understanding the processes and patterns of local adaptation and migration involves an exhaustive knowledge of how landscape features and population distances shape the genetic variation at the geographical level. Ctenomys australis is an endangered subterranean rodent characterized by having a restricted geographic range immerse in a highly fragmented sand dune landscape in the Southeast of Buenos Aires province, Argentina. We use 13 microsatellite loci in a total of 194 individuals from 13 sampling sites to assess the dispersal patterns and population structure in the complete geographic range of this endemic species. Our analyses show that populations are highly structured with low rates of gene flow among them. Genetic differentiation among sampling sites was consistent with an isolation by distance pattern, however, an important fraction of the population differentiation was explained by natural barriers such as rivers and streams. Although the individuals were sampled at locations distanced from each other, we also use some landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. These analyses showed that the sand dune habitat availability (the most suitable habitat for the occupation of the species), was one of the main factors that explained the differentiation patterns of the different sampling sites located on both sides of the Quequén Salado River. Finally, habitat availability was directly associated with the width of the sand dune landscape in the Southeast of Buenos Aires province, finding the greatest genetic differentiation among the populations of the Northeast, where this landscape is narrower.

Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis

BMC Genetics, 2010

Background: The population genetic structure of subterranean rodent species is strongly affected by demographic (e.g. rates of dispersal and social structure) and stochastic factors (e.g. random genetic drift among subpopulations and habitat fragmentation). In particular, gene flow estimates at different spatial scales are essential to understand genetic differentiation among populations of a species living in a highly fragmented landscape. Ctenomys australis (the sand dune tuco-tuco) is a territorial subterranean rodent that inhabits a relatively secure, permanently sealed burrow system, occurring in sand dune habitats on the coastal landscape in the south-east of Buenos Aires province, Argentina. Currently, this habitat is threatened by urban development and forestry and, therefore, the survival of this endemic species is at risk. Here, we assess population genetic structure and patterns of dispersal among individuals of this species at different spatial scales using 8 polymorphic microsatellite loci. Furthermore, we evaluate the relative importance of sex and habitat configuration in modulating the dispersal patterns at these geographical scales.

Spatial genetic structure of a small rodent in a heterogeneous landscape

Molecular Ecology, 2008

Gene flow in natural populations may be strongly influenced by landscape features. The integration of landscape characteristics in population genetic studies may thus improve our understanding of population functioning. In this study, we investigated the population genetic structure and gene flow pattern for the common vole, Microtus arvalis, in a heterogeneous landscape characterised by strong spatial and temporal variation. The studied area is an intensive agricultural zone of approximately 500 km 2 crossed by a motorway. We used individual-based Bayesian methods to define the number of population units and their spatial borders without prior delimitation of such units. Unexpectedly, we determined a single genetic unit that covered the entire area studied. In particular, the motorway considered as a likely barrier to dispersal was not associated with any spatial genetic discontinuity. Using computer simulations, we demonstrated that recent anthropogenic barriers to effective dispersal are difficult to detect through analysis of genetic variation for species with large effective population sizes. We observed a slight, but significant, pattern of isolation by distance over the whole study site. Spatial autocorrelation analyses detected genetic structuring on a local scale, most probably due to the social organisation of the study species. Overall, our analysis suggests intense small-scale dispersal associated with a large effective population size. High dispersal rates may be imposed by the strong spatio-temporal heterogeneity of habitat quality, which characterises intensive agroecosystems.

Habitat specialization interacts with habitat amount to determine dispersal success of rodents in fragmented landscapes

2013

Habitat specialization is considered one of the most important determinants of species vulnerability to habitat loss and fragmentation because it defines species dispersal ability and thus the degree of isolation of populations. Further, dispersal success of habitat-specialist species depends on the distance between fragments, which is conditioned on the total amount of habitat in the landscape. Here, we compared the influence of total habitat amount on dispersal success and abundance patterns of 2 habitat specialists and 1 generalist Atlantic Forest rodent. We investigated short-term population dynamics in a continuous forest landscape as well as in 6 small forest fragments located in 2 landscapes differing in the amount of forest cover (30% and 50%). Further, we analyzed the influence of fragment size on population density in the fragmented landscapes. Number of immigrants and abundance of both habitat-specialist species decreased remarkably in small patches of the 30% forest cover landscape compared to both more-forested landscapes, and both species showed a patch-area effect on density in this landscape. In contrast, the generalist species showed similar immigration rates in continuous forest and patches of the less-forested landscape, high temporal and spatial variability in abundance, and no patch-area effect in any of the landscapes. The results provide empirical support for the interaction between habitat specialization and habitat amount in determining the response of species to habitat loss, showing that the response of habitat specialists-in contrast to generalists-is governed by the landscape-wide amount of habitat.

Is genetic structure of the southern pygmy mouse Baiomys musculus (Cricetidae) related to human-induced spatial landscape heterogeneity in a tropical dry forest?

Genetica, 2012

Tropical dry forests are biologically important biomes sustaining a high rate of endemic species. However, these forests are highly threatened by human activities that negatively impact them on distinct levels, including the genetic diversity. Within the framework of landscape genetics (that seeks to evaluate the relation of characteristics of the environmental matrix with population genetics), we used ISSR markers to evaluate the relationship between the alteration of tropical dry forest by humaninduced activities (conserved vs. disturbed) with the genetic structure of four breeding sites of the southern pygmy mouse Baiomys musculus. Averaging among the 105 loci used, the unbiased heterozygosis per population (0.247-0.305) was statistically similar among the four sites, as well as between conserved and disturbed conditions (2-way ANOVA F (3,16) = 1.47, P = 0.1984). The genetic differentiation among the four breeding sites was high (F ST = 0.1122; 95 % CI 0.082-0.146) considering the geographical scale evaluated (ca. 4 km). Both, a factorial correspondence analysis and a model-based clustering analysis showed the existence of four genetic groups (one per breeding site). However, no association of genetic structure with disturbance conditions was revealed by these analyses. The absence of differences in mean genetic diversity and the lack of association of genetic structure with habitat transformation suggest that B. musculus has enough behavioral plasticity and enough genetic diversity to respond to environmental heterogeneity caused by human activities. We discussed conditions in which habitat transformation could indeed favor B. musculus.