Increasing the Safety Profile of the Master Donor Live Attenuated Influenza Vaccine (original) (raw)

A New Master Donor Virus for the Development of Live-Attenuated Influenza B Virus Vaccines

Viruses, 2021

Influenza B viruses (IBV) circulate annually, with young children, the elderly and immunocompromised individuals being at high risk. Yearly vaccinations are recommended to protect against seasonally influenza viruses, including IBV. Live attenuated influenza vaccines (LAIV) provide the unique opportunity for direct exposure to the antigenically variable surface glycoproteins as well as the more conserved internal components. Ideally, LAIV Master Donor Viruses (MDV) should accurately reflect seasonal influenza strains. Unfortunately, the continuous evolution of IBV have led to significant changes in conserved epitopes compared to the IBV MDV based on B/Ann Arbor/1/1966 strain. Here, we propose a recent influenza B/Brisbane/60/2008 as an efficacious MDV alternative, as its internal viral proteins more accurately reflect those of circulating IBV strains. We introduced the mutations responsible for the temperature sensitive (ts), cold adapted (ca) and attenuated (att) phenotype of B/Ann...

Nonreplicating Influenza A Virus Vaccines Confer Broad Protection against Lethal Challenge

mBio, 2015

New vaccine technologies are being investigated for their ability to elicit broadly cross-protective immunity against a range of influenza viruses. We compared the efficacies of two intranasally delivered nonreplicating influenza virus vaccines (H1 and H5 S-FLU) that are based on the suppression of the hemagglutinin signal sequence, with the corresponding H1N1 and H5N1 cold-adapted (ca) live attenuated influenza virus vaccines in mice and ferrets. Administration of two doses of H1 or H5 S-FLU vaccines protected mice and ferrets from lethal challenge with homologous, heterologous, and heterosubtypic influenza viruses, and two doses of S-FLU and ca vaccines yielded comparable effects. Importantly, when ferrets immunized with one dose of H1 S-FLU or ca vaccine were challenged with the homologous H1N1 virus, the challenge virus failed to transmit to naive ferrets by the airborne route. S-FLU technology can be rapidly applied to any emerging influenza virus, and the promising preclinical...

Alternative Live-Attenuated Influenza Vaccines Based on Modifications in the Polymerase Genes Protect against Epidemic and Pandemic Flu

Journal of Virology, 2010

Human influenza is a seasonal disease associated with significant morbidity and mortality. Influenza vaccination is the most effective means for disease prevention. We have previously shown that mutations in the PB1 and PB2 genes of the live-attenuated influenza vaccine (LAIV) from the cold-adapted ( ca ) influenza virus A/Ann Arbor/6/60 (H2N2) could be transferred to avian influenza viruses and produce partially attenuated viruses. We also demonstrated that avian influenza viruses carrying the PB1 and PB2 mutations could be further attenuated by stably introducing a hemagglutinin (HA) epitope tag in the PB1 gene. In this work, we wanted to determine whether these modifications would also result in attenuation of a so-called triple reassortant (TR) swine influenza virus (SIV). Thus, the TR influenza A/swine/Wisconsin/14094/99 (H3N2) virus was generated by reverse genetics and subsequently mutated in the PB1 and PB2 genes. Here we show that a combination of mutations in this TR backb...

Novel Approaches for The Development of Live Attenuated Influenza Vaccines

Viruses, 2019

Influenza virus still represents a considerable threat to global public health, despite the advances in the development and wide use of influenza vaccines. Vaccination with traditional inactivate influenza vaccines (IIV) or live-attenuated influenza vaccines (LAIV) remains the main strategy in the control of annual seasonal epidemics, but it does not offer protection against new influenza viruses with pandemic potential, those that have shifted. Moreover, the continual antigenic drift of seasonal circulating influenza viruses, causing an antigenic mismatch that requires yearly reformulation of seasonal influenza vaccines, seriously compromises vaccine efficacy. Therefore, the quick optimization of vaccine production for seasonal influenza and the development of new vaccine approaches for pandemic viruses is still a challenge for the prevention of influenza infections. Moreover, recent reports have questioned the effectiveness of the current LAIV because of limited protection, mainly...

Live Attenuated Reassortant Vaccines Based on A/Leningrad/134/17/57 Master Donor Virus Against H5 Avian Influenza

The Open Microbiology Journal, 2017

Background: The H5N1 avian influenza was first recognized in humans in Hong Kong 20 years ago. Current enzootic spread of highly pathogenic H5N1 virus among wild and domestic poultry and a number of severe human respiratory diseases caused by this pathogen have stimulated necessity of development of potentially pandemic influenza vaccines. Discussion: In the past few years, significant research was conducted on how to prevent H5N1 influenza. Live, attenuated cold–adapted reassortant influenza vaccine (LAIV) is considered as one of the most promising candidates for pandemic and prepandemic vaccines. LAIV has proven to be safe and efficacious; pandemic LAIV might be more effective than inactivated vaccine in providing broader immune response. Conclusion: This review covers development of LAIVs against potential avian “pandemic” H5N1 subtype based on cold–adapted A/Leningrad/134/17/57 (H2N2) master donor virus backbone, and their preclinical and clinical studies.

Live attenuated influenza virus vaccines by computer-aided rational design

Nature Biotechnology, 2010

Influenza claims 250,000-500,000 lives annually worldwide. Despite existing vaccines and enormous efforts in biomedical research, these staggering numbers have not changed significantly over the last two decades 1 , motivating the search for new, more effective, vaccines that can be rapidly designed and easily produced. Using influenza virus strain A/PR/8/34, we describe a systematic, rational approach, termed Synthetic Attenuated Virus Engineering (SAVE), to develop new, efficacious live attenuated influenza virus vaccine candidates through genome-scale changes in codon pair bias. Attenuation is based on many hundreds of nucleotide changes across the viral genome, offering high genetic stability and a wide margin of safety. The method can be applied rapidly to any emerging influenza virus in its entirety, an advantage that is significant for dealing with seasonal epidemics and pandemic threats, such as H5N1-or 2009-H1N1 influenza. Influenza viruses are negative stranded, enveloped orthomyxoviruses with eight gene segments, each encoding one or two proteins 2. The signature antigenicity of the A and B types of influenza viruses is determined by the glycoproteins hemagglutinin (HA) and neuraminidase (NA). Antigenicity undergoes yearly genetic drift by point mutations, which is the basis for seasonal epidemics 1-3. Swapping of gene segments by reassortment between viruses of aquatic birds, swine and humans produces new type A influenza viruses (genetic shift) with novel antigenicity that may cause devastating pandemics 1-3. The capacity of influenza viruses for immune escape demands annual updating of vaccine strains to reflect changes in the HA and NA genes within the impending seasonal strains. Two types of vaccines are currently used: a chemically inactivated virus delivered by injection, and a live attenuated influenza vaccine (LAIV) of cold-adapted virus 4 , delivered as a nasal-spray ("FluMist") (CDC; http://www.cdc.gov/flu/protect/keyfacts.htm). Either vaccine comes with limitations. While cell-mediated responses are being recognized as a major determinant of influenza immunity 5-8 , the traditional, killed vaccines act mainly by Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:

Comparative Study of the Temperature Sensitive, Cold Adapted and Attenuated Mutations Present in the Master Donor Viruses of the Two Commercial Human Live Attenuated Influenza Vaccines

Viruses, 2019

Influenza viruses cause annual, seasonal infection across the globe. Vaccination represents the most effective strategy to prevent such infections and/or to reduce viral disease. Two major types of influenza vaccines are approved for human use: inactivated influenza vaccines (IIVs) and live attenuated influenza vaccines (LAIVs). Two Master Donor Virus (MDV) backbones have been used to create LAIVs against influenza A virus (IAV): the United States (US) A/Ann Arbor/6/60 (AA) and the Russian A/Leningrad/134/17/57 (Len) H2N2 viruses. The mutations responsible for the temperature sensitive (ts), cold-adapted (ca) and attenuated (att) phenotypes of the two MDVs have been previously identified and genetically mapped. However, a direct comparison of the contribution of these residues to viral attenuation, immunogenicity and protection efficacy has not been conducted. Here, we compared the In vitro and in vivo phenotype of recombinant influenza A/Puerto Rico/8/34 H1N1 (PR8) viruses containi...

A Novel Type of Influenza Vaccine: Safety and Immunogenicity of Replication‐Deficient Influenza Virus Created by Deletion of the Interferon Antagonist NS1

The Journal of Infectious Diseases, 2010

BACKGROUND. The nonstructural protein NS1 of influenza virus counteracts the interferon-mediated immune response of the host. By deleting the open reading frame of NS1, we have generated a novel type of influenza vaccine. We studied the safety and immunogenicity of an influenza strain lacking the NS1 gene (DeltaNS1-H1N1) in healthy volunteers. METHODS. Healthy seronegative adult volunteers were randomized to receive either a single intranasal dose of the DeltaNS1-H1N1 A/New Caledonia vaccine at 1 of 5 dose levels (6.4, 6.7, 7.0, 7.4, and 7.7 log(10) median tissue culture infective dose) (n = 36 recipients) or placebo (n = 12 recipients). RESULTS. Intranasal vaccination with the replication-deficient DeltaNS1-H1N1 vaccine was well tolerated. Rhinitis-like symptoms and headache were the most common adverse events identified during the 28-day observation period. Adverse events were similarly distributed between the treatment and placebo groups. Vaccine-specific local and serum antibodies were induced in a dose-dependent manner. In the highest dose group, vaccine-specific antibodies were detected in 10 of 12 volunteers. Importantly, the vaccine also induced neutralizing antibodies against heterologous drift variants. CONCLUSIONS. We show that vaccination with an influenza virus strain lacking the viral interferon antagonist NS1 induces statistically significant levels of strain-specific and cross-neutralizing antibodies despite the highly attenuated replication-deficient phenotype. Further studies are warranted to determine whether these results translate into protection from influenza virus infection. TRIAL REGISTRATION. ClinicalTrials.gov identifier: NCT00724997 .