Reverse genetics approaches: a novel strategy for African horse sickness virus vaccine design (original) (raw)

African Horse Sickness: A Review of Current Understanding and Vaccine Development

Viruses, 2019

African horse sickness is a devastating disease that causes great suffering and many fatalities amongst horses in sub-Saharan Africa. It is caused by nine different serotypes of the orbivirus African horse sickness virus (AHSV) and it is spread by Culicoid midges. The disease has significant economic consequences for the equine industry both in southern Africa and increasingly further afield as the geographic distribution of the midge vector broadens with global warming and climate change. Live attenuated vaccines (LAV) have been used with relative success for many decades but carry the risk of reversion to virulence and/or genetic re-assortment between outbreak and vaccine strains. Furthermore, the vaccines lack DIVA capacity, the ability to distinguish between vaccine-induced immunity and that induced by natural infection. These concerns have motivated interest in the development of new, more favourable recombinant vaccines that utilize viral vectors or are based on reverse geneti...

Establishment of different plasmid only-based reverse genetics systems for the recovery of African horse sickness virus

Virology, 2016

In an effort to simplify and expand the utility of African horse sickness virus (AHSV) reverse genetics, different plasmid-based reverse genetics systems were developed. Plasmids containing cDNAs corresponding to each of the full-length double-stranded RNA genome segments of AHSV-4 under control of a T7 RNA polymerase promoter were co-transfected in cells expressing T7 RNA polymerase, and infectious AHSV-4 was recovered. This reverse genetics system was improved by reducing the required plasmids from 10 to five and resulted in enhanced virus recovery. Subsequently, a T7 RNA polymerase expression cassette was incorporated into one of the AHSV-4 rescue plasmids. This modified 5-plasmid set enabled virus recovery in BSR or L929 cells, thus offering the possibility to generate AHSV-4 in any cell line. Moreover, mutant and cross-serotype reassortant viruses were recovered. These plasmid DNA-based reverse genetics systems thus offer new possibilities for investigating AHSV biology and dev...

VP2 Exchange and NS3/NS3a Deletion in African Horse Sickness Virus (AHSV) in Development of Disabled Infectious Single Animal Vaccine Candidates for AHSV

Journal of virology, 2015

African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae. There are nine serotypes of AHSV showing different levels of cross neutralization. AHSV is transmitted by species of Culicoides biting midges and causes African horse sickness (AHS) in equids, with a mortality rate of up to 95% in naive horses. AHS has become a serious threat for countries outside Africa, since endemic Culicoides species in moderate climates appear to be competent vectors for the related bluetongue virus (BTV). To control AHS, live-attenuated vaccines (LAVs) are used in Africa. We used reverse genetics to generate "synthetic" reassortants of AHSV for all nine serotypes by exchange of genome segment 2 (Seg-2). This segment encodes VP2, which is the serotype-determining protein and the dominant target for neutralizing antibodies. Single Seg-2 AHSV reassortants showed similar cytopathogenic effects in mammalian cells but displayed different growth kinetics....

A Modified Vaccinia Ankara Virus (MVA) Vaccine Expressing African Horse Sickness Virus (AHSV) VP2 Protects Against AHSV Challenge in an IFNAR −/− Mouse Model

PLoS ONE, 2011

African horse sickness (AHS) is a lethal viral disease of equids, which is transmitted by Culicoides midges that become infected after biting a viraemic host. The use of live attenuated vaccines has been vital for the control of this disease in endemic regions. However, there are safety concerns over their use in non-endemic countries. Research efforts over the last two decades have therefore focused on developing alternative vaccines based on recombinant baculovirus or live viral vectors expressing structural components of the AHS virion. However, ethical and financial considerations, relating to the use of infected horses in high biosecurity installations, have made progress very slow. We have therefore assessed the potential of an experimental mouse-model for AHSV infection for vaccine and immunology research. We initially characterised AHSV infection in this model, then tested the protective efficacy of a recombinant vaccine based on modified vaccinia Ankara expressing AHS-4 VP2 (MVA-VP2).

Protective efficacy of multivalent replication-abortive vaccine strains in horses against African horse sickness virus challenge

Vaccine, 2017

African horse sickness virus (AHSV) is an orbivirus, a member of the Reoviridae family. Nine different serotypes have been described so far. AHSV is vectored by Culicoides spp. to equids, causing high mortality, particularly in horses, with considerable economic impacts. For development of a safe attenuated vaccine, we previously established an efficient reverse genetics (RG) system to generate Entry Competent Replication-Abortive (ECRA) virus strains, for all nine serotypes and demonstrated the vaccine potential of these strains in type I interferon receptor (IFNAR)-knockout mice. Here, we evaluated the protective efficacies of these ECRA viruses in AHSV natural hosts. One monoserotype (ECRA.A4) vaccine and one multivalent cocktail (ECRA.A1/4/6/8) vaccine were tested in ponies and subsequently challenged with a virulent AHSV4. In contrast to control animals, all vaccinated ponies were protected and did not develop severe clinical symptoms of AHS. Furthermore, the multivalent cockta...

Immunogenicity of plant-produced African horse sickness virus-like particles: implications for a novel vaccine

Plant biotechnology journal, 2017

African horse sickness (AHS) is a debilitating and often fatal viral disease affecting horses in much of Africa, caused by the dsRNA orbivirus African horse sickness virus (AHSV). Vaccination remains the single most effective weapon in combatting AHS, as there is no treatment for the disease apart from good animal husbandry. However, the only commercially available vaccine is a live attenuated version of the virus (LAV). The threat of outbreaks of the disease outside its endemic region and the fact that the LAV is not licensed for use elsewhere in the world, have spurred attempts to develop an alternative safer, yet cost-effective recombinant vaccine. Here we report the plant-based production of a virus-like particle (VLP) AHSV serotype 5 candidate vaccine by Agrobacterium tumefaciens-mediated transient expression of all four capsid proteins in Nicotiana benthamiana using the cowpea mosaic virus-based HyperTrans (CPMV-HT) and associated pEAQ plant expression vector system. The produ...

Plant-produced chimeric virus-like particles - a new generation vaccine against African horse sickness

BMC Veterinary Research

Background African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. Results In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity ...

Protective immunization of horses with a recombinant canarypox virus vectored vaccine co-expressing genes encoding the outer capsid proteins of African horse sickness virus

Vaccine, 2009

We describe the development and preliminary characterization of a recombinant canarypox virus vectored (ALVAC ® ) vaccine for protective immunization of equids against African horse sickness virus (AHSV) infection. Horses (n = 8) immunized with either of two concentrations of recombinant canarypox virus vector (ALVAC-AHSV) co-expressing synthetic genes encoding the outer capsid proteins (VP2 and VP5) of AHSV serotype 4 (AHSV-4) developed variable titres (<10-80) of virus-specific neutralizing antibodies and were completely resistant to challenge infection with a virulent strain of AHSV-4. In contrast, a horse immunized with a commercial recombinant canarypox virus vectored vaccine expressing the haemagglutinin genes of two equine influenza H3N8 viruses was seronegative to AHSV and following infection with virulent AHSV-4 developed pyrexia, thrombocytopenia and marked oedema of the supraorbital fossae typical of the "dikkop" or cardiac form of African horse sickness. AHSV was detected by virus isolation and quantitative reverse transcriptase polymerase chain reaction in the blood of the control horse from 8 days onwards after challenge infection whereas AHSV was not detected at any time in the blood of the ALVAC-AHSV vaccinated horses. The control horse seroconverted to AHSV by 2 weeks after challenge infection as determined by both virus neutralization and ELISA assays, whereas six of eight of the ALVAC-AHSV vaccinated horses did not seroconvert by either assay following challenge infection with virulent AHSV-4. These data confirm that the ALVAC-AHSV vaccine will be useful for the protective immunization of equids against African horse sickness, and avoids many of the problems inherent to liveattenuated AHSV vaccines.

Induction of antibody responses to African horse sickness virus (AHSV) in ponies after vaccination with recombinant modified vaccinia Ankara (MVA)

PLoS One, 2009

Background: African horse sickness virus (AHSV) causes a non-contagious, infectious disease in equids, with mortality rates that can exceed 90% in susceptible horse populations. AHSV vaccines play a crucial role in the control of the disease; however, there are concerns over the use of polyvalent live attenuated vaccines particularly in areas where AHSV is not endemic. Therefore, it is important to consider alternative approaches for AHSV vaccine development. We have carried out a pilot study to investigate the ability of recombinant modified vaccinia Ankara (MVA) vaccines expressing VP2, VP7 or NS3 genes of AHSV to stimulate immune responses against AHSV antigens in the horse.