A protective bivalent vaccine against Rift Valley fever and bluetongue (original) (raw)
Related papers
PLOS Neglected Tropical Diseases
Background Many ruminant diseases of viral aetiology can be effectively prevented using appropriate vaccination measures. For diseases such as Rift Valley fever (RVF) the long inter-epizootic periods make routine vaccination programs unfeasible. Coupling RVF prophylaxis with seasonal vaccination programmes by means of multivalent vaccine platforms would help to reduce the risk of new RVF outbreaks. Methodology/Principal findings In this work we generated recombinant attenuated Rift Valley fever viruses (RVFVs) encoding in place of the virulence factor NSs either the VP2 capsid protein or a truncated form of the non-structural NS1 protein of bluetongue virus serotype 4 (BTV-4). The recombinant viruses were able to carry and express the heterologous BTV genes upon consecutive passages in cell cultures. In murine models, a single immunization was sufficient to protect mice upon RVFV challenge and to elicit a specific immune response against BTV-4 antigens that was fully protective afte...
Vector-Borne and Zoonotic Diseases, 2014
Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, is a mosquito-borne zoonotic pathogen that causes serious morbidity and mortality in livestock and humans. The recent spread of the virus beyond its traditional endemic boundaries in Africa to the Arabian Peninsula coupled with the presence of susceptible vectors in nonendemic countries has created increased interest in RVF vaccines. Subunit vaccines composed of specific virus proteins expressed in eukaryotic or prokaryotic expression systems are shown to elicit neutralizing antibodies in susceptible hosts. RVFV structural proteins, amino-terminus glycoprotein (Gn), and carboxylterminus glycoprotein (Gc), were expressed using a recombinant baculovirus expression system. The recombinant proteins were reconstituted as a GnGc subunit vaccine formulation and evaluated for immunogenicity in a target species, sheep. Six sheep were each immunized with a primary dose of 50 lg of each vaccine immunogen with the adjuvant montanide ISA25; at day 21, postvaccination, each animal received a second dose of the same vaccine. The vaccine induced a strong antibody response in all animals as determined by indirect enzyme-linked immunosorbent assay (ELISA). A plaque reduction neutralization test (PRNT 80 ) showed the primary dose of the vaccine was sufficient to elicit potentially protective virus neutralizing antibody titers ranging from 40 to 160, and the second vaccine dose boosted the titer to more than 1280. Furthermore, all animals tested positive for neutralizing antibodies at day 328 postvaccination. ELISA analysis using the recombinant nucleocapsid protein as a negative marker antigen indicated that the vaccine candidate is DIVA (differentiating infected from vaccinated animals) compatible and represents a promising vaccine platform for RVFV infection in susceptible species.
Scientific reports, 2016
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suitable for use in livestock or humans outside endemic areas. Here we report the evaluation of the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins. In a previous study, the vaccine elicited strong virus neutralizing antibody responses in sheep and was DIVA (differentiating naturally infected from vaccinated animals) compatible. In the current efficacy study, a group of sheep (n = 5) was vaccinated subcutaneously with the glycoprotein-based subunit vaccine candidate and then subjected to heterologous challenge with the virulent Kenya-128B-15 RVFV strain. The vaccine elicited high virus neutralizing antibody titers and conferred complete protection in all vac...
Rift Valley fever virus subunit vaccines confer complete protection against a lethal virus challenge
Vaccine, 2010
Rift Valley fever virus (RVFV) is an emerging mosquito-borne virus causing significant morbidity and mortality in livestock and humans. Rift Valley fever is endemic in Africa, but also outside this continent outbreaks have been reported. Here we report the evaluation of two vaccine candidates based on the viral Gn and Gc envelope glycoproteins, both produced in a Drosophila insect cell expression system. Virus-like particles (VLPs) were generated by merely expressing the Gn and Gc glycoproteins. In addition, a soluble form of the Gn ectodomain was expressed and affinity-purified from the insect cell culture supernatant. Both vaccine candidates fully protected mice from a lethal challenge with RVFV. Importantly, absence of the nucleocapsid protein in either vaccine candidate facilitates the differentiation between infected and vaccinated animals using a commercial recombinant nucleocapsid protein-based indirect ELISA.
Vaccines, 2020
In vitro neutralizing antibodies have been often correlated with protection against Rift Valley fever virus (RVFV) infection. We have reported previously that a single inoculation of sucrose-purified modified vaccinia Ankara (MVA) encoding RVFV glycoproteins (rMVAGnGc) was sufficient to induce a protective immune response in mice after a lethal RVFV challenge. Protection was related to the presence of glycoprotein specific CD8+ cells, with a low-level detection of in vitro neutralizing antibodies. In this work we extended those observations aimed to explore the role of humoral responses after MVA vaccination and to study the contribution of each glycoprotein antigen to the protective efficacy. Thus, we tested the efficacy and immune responses in BALB/c mice of recombinant MVA viruses expressing either glycoprotein Gn (rMVAGn) or Gc (rMVAGc). In the absence of serum neutralizing antibodies, our data strongly suggest that protection of vaccinated mice upon the RVFV challenge can be ac...
Vaccines, 2021
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen that causes periodic outbreaks of abortion in ruminant species and hemorrhagic disease in humans in sub-Saharan Africa. These outbreaks have a significant impact on veterinary and public health. Its introduction to the Arabian Peninsula in 2003 raised concerns of further spread of this transboundary pathogen to non-endemic areas. These concerns are supported by the presence of competent vectors in many non-endemic countries. There is no licensed RVF vaccine available for humans and only a conditionally licensed veterinary vaccine available in the United States. Currently employed modified live attenuated virus vaccines in endemic countries lack the ability for differentiating infected from vaccinated animals (DIVA). Previously, the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins, derived from the 1977 human RVFV isolate ZH548, was demonstrated in sheep. In the current study, catt...
NPJ vaccines, 2018
Rift Valley fever virus, a phlebovirus endemic in Africa, causes serious diseases in ruminants and humans. Due to the high probability of new outbreaks and spread to other continents where competent vectors are present, vaccine development is an urgent priority as no licensed vaccines are available outside areas of endemicity. In this study, we evaluated in sheep the protective immunity induced by DNA vaccines encoding the extracellular portion of the Gn antigen which was either or not targeted to antigen-presenting cells. The DNA encoding untargeted antigen was the most potent at inducing IgG responses, although not neutralizing, and conferred a significant clinical and virological protection upon infectious challenge, superior to DNA vaccines encoding the targeted antigen. A statistical analysis of the challenge parameters supported that the anti-eGn IgG, rather than the T-cell response, was instrumental in protection. Altogether, this work shows that a DNA vaccine encoding the ex...
Chimpanzee Adenovirus Vaccine Provides Multispecies Protection against Rift Valley Fever
Scientific Reports, 2016
Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replicationdeficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.
Virus-like particles (VLPs) present viral antigens in a native conformation and are effectively recognized by the immune system and therefore are considered as suitable and safe vaccine candidates against many viral diseases. Here we demonstrate that chimeric VLPs containing Rift Valley fever virus (RVFV) glycoproteins G N and G C , nucleoprotein N and the gag protein of Moloney murine leukemia virus represent an effective vaccine candidate against Rift Valley fever, a deadly disease in humans and livestock. Long-lasting humoral and cellular immune responses are demonstrated in a mouse model by the analysis of neutralizing antibody titers and cytokine secretion profiles. Vaccine efficacy studies were performed in mouse and rat lethal challenge models resulting in high protection rates. Taken together, these results demonstrate that replication-incompetent chimeric RVF VLPs are an efficient RVFV vaccine candidate.