An Experimental Investigation of Secondary Flows and Loss Development Downstream of a Highly Loaded Low Pressure Turbine Outlet Guide Vane Cascade (original) (raw)
Abstract
To study the time-mean and temporal characteristics of secondary flow within a linear GE-E 3 high pressure turbine cascade, a planar Time-Resolved Particle Image Velocimetry (TR-PIV) system is used. In the double-passage cascade, a row of six converging slot-holes is placed upstream of center blade to generate film cooling effect, and different turbulence grids are replaced to create various free-stream turbulence (Tu in) levels. In this experiment, the time-mean characteristics of secondary flow, the fast switch process of unsteady leading edge horseshoe vortex (LEHV), and the temporal characteristics of corner vortices (CVs) are completely exhibited by the TR-PIV technique. The influences of the upstream coolant injection and Tu in level on the flow characteristics of LEHV and passage vortex (PV) are discussed. The discussion reveals that: (1) in the case of no coolant injection, a high Tu in level slightly moves the LEHV toward the blade, changes the shape of the PV, increases the fluctuations of the LEHV and PV, and reduces the frequency of the LEHV switch process; (2) at various Tu in levels, the coolant injections suppress the formation of the LEHV, and the LEHV disappears at a high coolant-to-mainstream blowing ratio (BR) of 1.5; (3) a high BR of 1.5 can greatly weaken the PV at various Tu in levels, and relative to the case of low Tu in , the high Tu in level induces a larger reduction; (4) for a low BR, at various Tu in levels, a slight change in the LEHV results in a distinct difference of the PV characteristics; (5) for a high BR, since the LEHV disappears, the Tu in effect on the secondary flow characteristics is slight.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (33)
- L.S. Langston, Secondary flows in axial turbines -a review, Ann. New York Acad. Sci. 934 (2006) 11-26.
- T.W. Simon, J.D. Piggush, Turbine endwall aerodynamics and heat transfer, J. Propul. Power 22 (2) (2006) 301-312.
- B. Laveau, R.S. Abhari, M.E. Crawford, E. Lutum, High resolution heat transfer measurement on flat and contoured endwalls in a linear cascade, J. Turbomachinery-Trans. ASME 135 (2013). 041020-1-9.
- H.P. Wang, S.J. Olson, R.J. Goldstein, E.R.G. Eckert, Flow visualization in a linear turbine cascade of high performance turbine blades, J. Turbomachinery-Trans. ASME 119 (1997) 1-8.
- H. Ma, H. Jiang, Y. Qiu, Visualizations of the unsteady flow field near the endwall of a turbine cascade, in: Proceedings of ASME Turbo Expo, GT-2002- 30350, 2002.
- A. Senoo, S. Mizuki, H. Tsujita, A. Yamamoto, Investigation of internal flow in ultra-highly loaded turbine cascade by PIV method, J. Therm. Sci. 9 (3) (2000) 193-198.
- S. Friedrichs, H.P. Hodson, W.N. Dawes, Aerodynamic aspects of endwall film- cooling, J. Turbomachinery-Trans. ASME 119 (1997) 786-793.
- L.J. Zhang, R.S. Jaiswal, Turbine nozzle endwall film cooling study using pressure-sensitive paint, J. Turbomachinery-Trans. ASME 123 (2001) 730-738.
- N. Sundaram, K.A. Thole, Bump and trench modifications to film-cooling holes at the vane-endwall junction, J. Turbomachinery-Trans. ASME 130 (2008). 041013-1-9.
- Z. Gao, D. Narzary, J.C. Han, Turbine blade platform film cooling with typical stator-rotor purge flow and discrete-hole film cooling, J. Turbomachinery- Trans. ASME 131 (2009). 041004-1-11.
- N. Sundaram, K.A. Thole, Film-cooling flowfields with trenched holes on an endwall, J. Turbomachinery-Trans. ASME 131 (2009). 041007-1-10.
- A.A. Thrift, K.A. Thole, Influence of flow injection angle on a leading-edge horseshoe vortex, Int. J. Heat Mass Transf. 55 (2012) 4652-4664.
- H.J. Rehder, A. Dannhauer, Experimental investigation of turbine leakage flows on the three-dimensional flow field and endwall heat transfer, J. Turbomachinery-Trans. ASME 129 (2007) 608-618.
- G.I. Mahmood, S. Acharya, Experimental investigation of secondary flow structure in a blade passage with and without leading edge fillets, J. Fluids Eng.-Trans. ASME 129 (2007) 253-262.
- M.B. Kang, K.A. Thole, Flowfield measurements in the endwall region of a stator vane, J. Turbomachinery-Trans. ASME 122 (2000) 458-466.
- R.W. Radomsky, K.A. Thole, High free-steam turbulence effects on endwall heat transfer for a gas turbine stator vane, J. Turbomachinery-Trans. ASME 122 (2000) 699-708.
- K.A. Thole, R.W. Radomsky, M.B. Kang, A. Kohli, Elevated freestream turbulence effects on heat transfer for a gas turbine vane, Int. J. Heat Fluid Flow 23 (2002) 137-147.
- G.M. Laskowski, A. Vicharelli, G. Medic, C.J. Elkins, J.K. Eaton, P.A. Durbin, Inverse design and experimental measurements in a double-passage transonic turbine cascade model, J. Turbomachinery-Trans. ASME 127 (2005) 619-626.
- A. Vicharelli, J.K. Eaton, Turbulence measurements in a transonic two-passage turbine cascade, Exp. Fluids 40 (2006) 897-917.
- J. H. Wang, Y.L. Liu, X.C. Wang, Z.N. Du, S.J. Yang, Characteristics of Tip Leakage of the Turbine Blade with Cutback Squealer and Coolant Injection, in: Proceedings of ASME Turbo Expo, GT2010-22566, 2010.
- K. Takeishi, Y. Oda, J. Seguchi, S. Kozono, Effect of endwall film cooling upstream of an airfoil/endwall junction to suppress the formation of horseshoe vortex in a symmetric airfoil, in: Proceedings of ASME Turbo Expo, GT2013- 95385, 2013.
- J.E. Sargison, S.M. Guo, M.L.G. Oldfield, G.D. Lock, A.J. Rawlinson, A converging slot-hole film-cooling geometry-Part 1: Low-speed flat-plate heat transfer and loss, J. Turbomachinery-Trans. ASME 124 (2002) 453-460.
- J.E. Sargison, M.L.G. Oldfield, S.M. Guo, G.D. Lock, A.J. Rawlinson, Flow visualisation of the external flow from a converging slot-hole film-cooling geometry, Exp. Fluids 38 (2005) 304-318.
- C.L. Liu, H.R. Zhu, J.T. Bai, D.X. Xu, Experimental research on the thermal performance of converging slot holes with different divergence angles, Exp. Thermal Fluid Sci. 33 (2009) 808-817.
- J.K. Sveen, An introduction to MatPIV v. 1.6.1, software documentation, 2004.
- J. Pu, Z.Q. Ke, J.H. Wang, H.D. You, Z.N. Du, An experimental investigation on fluid flow characteristics in a real coolant channel of LP turbine blade with PIV technique, Exp. Thermal Fluid Sci. 45 (2013) 43-53.
- D. Ragni, A. Ashok, B.W. van Oudheusden, F. Scarano, Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry, Meas. Sci. Technol. 20 (2009) 074005.
- T.J. Praisner, C.R. Smith, The dynamics of the horseshoe vortex and associated endwall heat transfer-Part I: Temporal behavior, J. Turbomachinery-Trans. ASME 128 (2006) 747-754.
- S. Hada, K. Takeishi, Y. Oda, S. Mori, Y. Nuta, The Effect of Leading Edge Diameter on the Horse Shoe Vortex and Endwall Heat Transfer, in: Proceedings of ASME Turbo Expo, GT 2008-50892, 2008.
- D.R. Sabatino, C.R. Smith, Boundary layer influence on the unsteady horseshoe vortex flow and surface heat transfer, J. Turbomachinery-Trans. ASME 131 (2009) 011015.
- W.J. Devenport, R.L. Simpson, Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction, J. Fluid Mech. 210 (1990) 23- 55.
- J. Paik, C. Escauriaza, F. Sotiropoulos, On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction, Phys. Fluid 19 (2007) 045107.
- R.J. Goldstein, H.P. Wang, M.Y. Jabbari, The influence of secondary flows near the end-wall and boundary layer disturbance on convective transport from a turbine blade, J. Turbomachinery-Trans. ASME 117 (1995) 657-665.