Flexible hybrid solid electrolyte incorporating ligament-shaped Li6.25Al0.25La3Zr2O12 filler for all-solid-state lithium-metal batteries (original) (raw)

Solid-state batteries: Unlocking lithium's potential with ceramic solid electrolytes

Recent progress indicates that ceramic materials may soon supplant liquid electrolytes in batteries, offering improved energy capacity and safety. W idespread adoption of electric vehicles (EV) will require dramatic changes to the energy storage market. Total worldwide lithium-ion (Li-ion) battery production was 221 GWh in 2018, while EV demand alone is projected to grow to more than 1,700 GWh by 2030. 1 As economies of scale have been met in Li-ion battery production, price at the pack level has fallen and is expected to break $100/kWh within the next few years. Li-ion batteries are expected to address near-term energy storage needs, with advances in cell chemistry providing steady improvement in cell capacity. Yet Li-ion batteries will eventually approach the practical limits of their energy storage capacity , and the volatile flammable liquid electrolyte in Li-ion cells requires thermal management systems that add cost, mass, and complexity to EV battery packs. Recent progress demonstrates that Li-ion conducting solid electrolytes have fundamental properties to supplant current Li-ion liquid electrolytes. Moreover, using solid electrolytes enables all-solid-state batteries, a new class of lithium batteries that are expected to reach storage capacities well beyond that of today's Li-ion batteries. The promise of a safer high-capacity battery has attracted enormous attention from fundamental research through start-up companies, with significant investment from venture capitalists and automakers. The Li-ion battery The 1970s marked development of the first Li-ion cathode intercalation materials. Cells with a metallic lithium anode were commercialized in the 1980s, but it was soon discovered Solid-state batteries: Unlocking lithium's potential with ceramic solid electrolytes that lithium deposits in dendritic structures upon battery cycling. These dendrites eventually grow through the separa-tor, connecting the anode and cathode and causing a dangerous short circuit of the cell. The solution was to replace the lithium anode with a graphite Li-ion host material, thereby producing the modern Li-ion battery. First introduced by Sony in 1991, the graphite anode is paired with a LiCoO 2 cathode and flooded with a liquid organic electrolyte with dissolved lithium salt. The dissolved lithium provides Li-ion transport within the cell. A thin and porous polymer separator prevents physical contact between the anode and cathode while allowing ionic transport between electrodes. This basic cell structure remains unchanged today, albeit with numerous energy-boosting innovations, including silicon anode additions, electrolyte additives to increase cycle life, and high nickel-content cathodes. These innovations have led to an average of 8% annualized energy density improvement in Li-ion batteries. 2 Despite this progress, the volumetric energy density of Li-ion batteries can only reach a practical limit of about 900 Wh/L at the cell level. For Li-ion batteries, active cathode and anode powders are mixed with binder and cast on a current collector using doctor blade, reverse comma, or slot die coating. These electrodes are slit into desired dimensions, interleaved with a separator, and either wound-as is the case of an 18650 (18 mm diameter; 65 mm length) cylindrical cell-or stacked or folded to produce a prismatic pouch cell. Figure 1 shows 18650 cylindrical wound cells and 10-Ah pouch cells. For EV applications, cells are arranged into modules, which are placed into a battery pack. For example, a Tesla Model 3 contains more than 4,000 individual cylindrical cells, producing about 80 kWh of storage. Other manufacturers , such as GM, use pouch-type cells, with 288 cells producing 60 kWh of storage in the Chevy Bolt. Li-ion battery packs contain significant battery management systems to keep cells within a safe operating range. Heat generated within the pack must be removed by cooling systems to protect both the performance and lifetime of Li-ion cells. Credit: Evan Dougherty/University of Michigan Engineering Communications and Marketing Induction coils heat a die for rapid densification of Li-ion conducting Li 7 La 3 Zr 2 O 12 ceramic solid electrolyte.

Solidification for solid-state lithium batteries with high energy density and long cycle life

Energy Materials, 2022

Conventional lithium-ion batteries with inflammable organic liquid electrolytes are required to make a breakthrough regarding their bottlenecks of energy density and safety, as demanded by the ever-increasing development of electric vehicles and grids. In this context, solid-state lithium batteries (SSLBs), which replace liquid electrolytes with solid counterparts, have become a popular research topic due to their excellent potential in the realization of improved energy density and safety. However, in practice, the energy density of SSLBs is limited by the cathode mass loading, electrolyte thickness and anode stability. Moreover, the crucial interfacial issues related to the rigid and heterogeneous solid-solid contacts between the electrolytes and electrodes, including inhomogeneous local potential distributions, sluggish ion transport, side reactions, space charge barriers and stability degradation, severely deteriorate the cycle life of SSLBs. Solidification, which converts a liquid into a solid inside a solid battery, represents a powerful tool to overcome the aforementioned obstacles. The liquid precursors fully wet the interfaces and infiltrate the electrodes, followed by in-situ conformal solidification under certain conditions for the all-in-one construction of cells with highly conducting, closely contacted and sustainable electrode/electrolyte interfaces, thereby enabling high energy density and long cycle life. Therefore, in this review, we address the research progress regarding the latest strategies toward the solidification of the electrolyte layers and the interfaces between the electrodes and electrolytes. The critical challenges and future research directions are proposed for the solidification strategies in SSLBs from both science and engineering perspectives.

Solid Electrolyte: the Key for High-Voltage Lithium Batteries

Advanced Energy Materials, 2014

tremendous research efforts have been devoted to developing new electrolytes with expanded safety window 12 ] as well as modifying the surface of anodes and cathodes 14 ] for improved stability, it is not easy to address the above four problems simultaneously. High-voltage lithium batteries can be successfully utilized only if all these problems associated with the cathode, the electrolyte, and the anode are solved fully.

Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes

Nano Energy, 2018

Solid-state lithium batteries have attracted significant attention recently due to their superior safety and energy density. Nevertheless, the large interfacial resistance has limited the development of SSLBs. To tackle this problem, a general strategy is to add liquid electrolytes (LE) at the interface to form a solid-liquid hybrid electrolyte. However, the effects and interfacial properties of LE in the solid-liquid hybrid electrolyte have not been wellunderstood. In this work, we quantitatively add LE at the interface to eliminate the large interfacial resistance and study its interfacial properties. As little as 2 µl of LE at the interface enables a hybrid LiFePO 4 \LATP\Li battery to deliver a specific capacity of 125 mAh g-1 at 1C and 98 mAh g-1 at 4C. Excess LE has no further contribution to the electrochemical performance. Furthermore, the rigid SSE could suppress the formation of lithium dendrites, 2 especially in the case with a high cathode loading (9.1 mg/cm 2), suggesting the feasibility of high energy density SSLBs using Li metal anodes. The interfacial analysis reveals that an interfacial solid-liquid electrolyte interphase (SLEI) was formed at the interface, preventing the reduction of LATP by Li metal, thus ensuring the long-term durability of LATP in LE.

Recent Developments and Challenges in Hybrid Solid Electrolytes for Lithium-Ion Batteries

Frontiers in Energy Research, 2020

Lithium-ion batteries (LIBs) have attracted worldwide research interest due to their high energy density and long cycle life. Solid-state LIBs improve the safety of conventional liquid-based LIBs by replacing the flammable organic electrolytes with a solid electrolyte. Among the various types of solid electrolytes, hybrid solid electrolytes (HSEs) demonstrate great promise to achieve high ionic conductivity, reduced interfacial resistance between the electrolyte and electrodes, mechanical robustness, and excellent processability due to the combined advantages of both polymer and inorganic electrolyte. This article summarizes recent developments in HSEs for LIBs. Approaches for the preparation of hybrid electrolytes and current understanding of iontransport mechanisms are discussed. The main challenges including unsatisfactory ionic conductivity and perspectives of HSEs for LIBs are highlighted for future development. The present review provides insights into HSE development to allow a more efficient and target-oriented future endeavor on achieving high-performance solid-state LIBs.

A Review of Inactive Materials and Components of Flexible Lithium-Ion Batteries

Advanced Sustainable Systems, 2017

Relatively high power and energy density, nominal operating voltage of typically 3.7 V, absence of memory effects, and long cycle life have popularized lithium-ion batteries (LIBs) as a major electrical energy storage system. [1-8] Although LIBs' energy density is lower than that of fossil fuels, [9] they are Flexible Li-ion batteries (LIBs) have a strong oncoming consumer market demand for use in wearable electronics, flexible electronics, and implantable medical devices. This market demand necessitates research on flexible LIBs to fulfill the energy requirements of these devices. One of the main areas of research of flexible LIBs is the active and inactive materials used in manufacturing these batteries. Active materials are those used in the battery electrodes to store lithium in their structure. The remaining materials in flexible LIBs, which do not directly contribute to energy storage, are inactive materials. Inactive materials and components-including electrode conductive materials, binders, separator, current collectors, electrolyte, and casing/ packaging-make up almost 60% of the total weight of a LIB. Thus, they are important in the determination of energy and power density of flexible LIBs. This study reviews the inactive materials and components of flexible LIBs from two aspects. First, inactive materials and components used in flexible LIBs and their properties are compared. Then, the compatibility and stability of inactive materials and components are discussed. Overall, this article gives an extensive insight to researchers on inactive materials and components employed so far for flexible LIBs.

Development and Optimization of Solid Polymer Electrolyte for Lithium Ion Batteries

2016

This thesis focuses on the development of new poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) in order to enhance their ionic conductivity at ambient temperature and fabricate the prototypes of novel Li ion batteries using these SPEs. Different types of SPEs have been developed: (i) blends of high molecular weight PEO and low molecular weight poly(vinyl acetate) (PVAc); (ii) composites of high molecular weight PEO and titanium dioxide (TiO2) nanoparticles; and (iii) blend-based composite electrolytes consisting of PEO and PVAc with dispersed TiO2. The SPEs were characterized by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The electrochemical performance of the battery prototypes were determined by galvanic cycles at various current densities. The results revealed that the crystallization of PEO was easily suppressed by blending it with PVAc. The resistance of these blends were found to decrease with an increase in the PVAc content. TiO2 nanoparticles were found to be a compatible filler with the PEO matrix, as was proven by the lowered crystallinity, glass transition and melting temperatures of the matrix, as well as a significantly enhanced conductivity at ambient temperature. A new type of SPE has been prepared by adding both PVAc and TiO2 to PEO-based electrolyte. The amorphous nature of the new electrolyte was confirmed by DSC. Several prototypes of a Liion battery, based on this blend-based composite electrolyte and utilizing LiFePO4 as cathode and Al as anode, were assembled and cycled at different current densities at room temperature, resulting in excellent performance. The best prototype so far showed more than 500 chargedischarge cycles with the coulombic efficiency approaching 100% and the resistance decreasing to 500 Ω.cm 2 .