The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development (original) (raw)

Tissue specific expression profile of Mediator genes in Arabidopsis

Plant Signaling & Behavior, 2013

Mediator was discovered in yeast as a necessary component for transcription of a protein coding gene. 1,2 Later on, Mediator was purified and characterized to be a gigantic multiprotein complex required by RNA polymerase II for the transcription of its target genes. 3-5 It was found to play important role in facilitating the assembly of the preinitiation complex. 6-8 Genetic, biochemical and bioinformatic analyses revealed its existence in all the eukaryotes ranging from simple unicellular yeast to complex multicellular mammals and plants. 8-11 In yeast, there are 25 subunits which make Mediator, whereas in animals and plants the number is higher. 11,12 Biochemical and biophysical studies in fungi and metazoans confirmed the modular structure of this complex, wherein the subunits compose four different modules namely Head, Middle, Tail and Kinase. 5,8,13-15 Head, Middle and Tail constitute the core part of the complex, whereas the Kinase module reversibly associates with the core part. Subunits constituting the Head and Middle modules are found to interact with RNA pol II and components of transcriptional machinery, whereas subunits of Tail module establish contact with diverse transcription factors. 13,16-18 Thus, Mediator provides an interface to relay the regulatory signals from the transcriptional regulators to the transcriptional machinery. The subunits of Kinase module can interact with the subunits of the Head and Middle modules, and so affect the interaction between the complex and the RNA pol II. That is why in many cases, presence of Kinase module in the Mediator was found to be associated with the repression of the gene expression. 19 Mediator is a gigantic multiprotein complex required for transcription of almost all the protein coding genes. In this report, we have analyzed the transcript abundance of 31 Med genes in different tissues of Arabidopsis. Our analysis revealed the tissue specific differential expression profile of many Med subunit genes suggesting they might be contributing in the formation, maturation or function of that specific tissue. Moreover, we also found increase or decrease in the expression level of several Med subunits during the same duration of specific processes (for example flowering) indicating probable enrichment of a particular arrangement of selected subunits during that process. Thus, this study suggests that not only specific Med subunits have functional relevance in specific processes, but specific arrangements of Med subunits might also play significant role in some processes in Arabidopsis or other plants.

Specific functions for Mediator complex subunits from different modules in the transcriptional response of Arabidopsis thaliana to abiotic stress

Scientific Reports, 2020

Adverse environmental conditions are detrimental to plant growth and development. Acclimation to abiotic stress conditions involves activation of signaling pathways which often results in changes in gene expression via networks of transcription factors (TFs). Mediator is a highly conserved co-regulator complex and an essential component of the transcriptional machinery in eukaryotes. Some Mediator subunits have been implicated in stress-responsive signaling pathways; however, much remains unknown regarding the role of plant Mediator in abiotic stress responses. Here, we use RNA-seq to analyze the transcriptional response of Arabidopsis thaliana to heat, cold and salt stress conditions. We identify a set of common abiotic stress regulons and describe the sequential and combinatorial nature of TFs involved in their transcriptional regulation. Furthermore, we identify stress-specific roles for the Mediator subunits MED9, MED16, MED18 and CDK8, and putative TFs connecting them to differ...

Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants

Frontiers in Plant Science, 2015

Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.

The Mediator complex in plants: structure, phylogeny, and expression profiling of representative genes in a dicot (Arabidopsis) and a monocot (rice) during reproduction and abiotic stress

Plant physiology, 2011

The Mediator (Med) complex relays regulatory information from DNA-bound transcription factors to the RNA polymerase II in eukaryotes. This macromolecular unit is composed of three core subcomplexes in addition to a separable kinase module. In this study, conservation of Meds has been investigated in 16 plant species representing seven diverse groups across the plant kingdom. Using Hidden Markov Model-based conserved motif searches, we have identified all the known yeast/metazoan Med components in one or more plant groups, including the Med26 subunits, which have not been reported so far for any plant species. We also detected orthologs for the Arabidopsis (Arabidopsis thaliana) Med32, -33, -34, -35, -36, and -37 in all the plant groups, and in silico analysis identified the Med32 and Med33 subunits as apparent orthologs of yeast/metazoan Med2/ 29 and Med5/24, respectively. Consequently, the plant Med complex appears to be composed of one or more members of 34 subunits, as opposed to 25 and 30 members in yeast and metazoans, respectively. Despite low similarity in primary Med sequences between the plants and their fungal/metazoan partners, secondary structure modeling of these proteins revealed a remarkable similarity between them, supporting the conservation of Med organization across kingdoms. Phylogenetic analysis between plant, human, and yeast revealed single clade relatedness for 29 Med genes families in plants, plant Meds being closer to human than to yeast counterparts. Expression profiling of rice (Oryza sativa) and Arabidopsis Med genes reveals that Meds not only act as a basal regulator of gene expression but may also have specific roles in plant development and under abiotic stress conditions.

The characterization of Mediator 12 and 13 as conditional positive gene regulators in Arabidopsis

Nature Communications

Mediator 12 (MED12) and MED13 are components of the Mediator multi-protein complex, that facilitates the initial steps of gene transcription. Here, in an Arabidopsis mutant screen, we identify MED12 and MED13 as positive gene regulators, both of which contribute broadly to morc1 de-repressed gene expression. Both MED12 and MED13 are preferentially required for the expression of genes depleted in active chromatin marks, a chromatin signature shared with morc1 re-activated loci. We further discover that MED12 tends to interact with genes that are responsive to environmental stimuli, including light and radiation. We demonstrate that light-induced transient gene expression depends on MED12, and is accompanied by a concomitant increase in MED12 enrichment during induction. In contrast, the steady-state expression level of these genes show little dependence on MED12, suggesting that MED12 is primarily required to aid the expression of genes in transition from less-active to more active s...

The Arabidopsis Mediator Complex Subunits MED16, MED14, and MED2 Regulate Mediator and RNA Polymerase II Recruitment to CBF-Responsive Cold-Regulated Genes

The Plant Cell, 2014

The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-offunction mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced.

Purification of a Plant Mediator from Arabidopsis thaliana Identifies PFT1 as the Med25 Subunit

Molecular Cell, 2007

Mediator, a central coregulator of transcription, has been identified as a large protein complex in eukaryotes ranging from yeast to man. It is therefore remarkable that Mediator has not yet been identified within the plant kingdom. Here we identify Mediator in a plant, Arabidopsis thaliana. The plant Mediator subunits typically show very low homology to other species, but our biochemical purification identifies 21 conserved and six A. thaliana-specific Mediator subunits. Most notably, we identify the A. thaliana proteins STRUWWELPETER (SWP) and PHYTOCHROME AND FLOWERING TIME 1 (PFT1) as the Med14 and Med25 subunits, respectively. These findings show that specific plant Mediator subunits are linked to the regulation of specialized processes such as the control of cell proliferation and the regulation of flowering time in response to light quality. The identification of the plant Mediator will provide new tools and insights into the regulation of transcription in plants.

Mediator Subunits MED16, MED14, and MED2 Are Required for Activation of ABRE-Dependent Transcription in Arabidopsis

Frontiers in Plant Science, 2021

The Mediator complex controls transcription of most eukaryotic genes with individual subunits required for the control of particular gene regulons in response to various perturbations. In this study, we reveal the roles of the plant Mediator subunits MED16, MED14, and MED2 in regulating transcription in response to the phytohormone abscisic acid (ABA) and we determine which cis elements are under their control. Using synthetic promoter reporters we established an effective system for testing relationships between subunits and specific cis-acting motifs in protoplasts. Our results demonstrate that MED16, MED14, and MED2 are required for the full transcriptional activation by ABA of promoters containing both the ABRE (ABA-responsive element) and DRE (drought-responsive element). Using synthetic promoter motif concatamers, we showed that ABA-responsive activation of the ABRE but not the DRE motif was dependent on these three Mediator subunits. Furthermore, the three subunits were requi...