Can we achieve biomimetic electrospun scaffolds with gelatin alone? (original) (raw)

Electrospun Collagen: A Tissue Engineering Scaffold with Unique Functional Properties in a Wide Variety of Applications

Type I collagen and gelatin, a derivative of Type I collagen that has been denatured, can each be electrospun into tissue engineering scaffolds composed of nano-to micron-scale diameter fibers. We characterize the biological activity of these materials in a variety of tissue engineering applications, including endothelial cell-scaffold interactions, the onset of bone mineralization, dermal reconstruction, and the fabrication of skeletal muscle prosthetics. Electrospun collgen (esC) consistently exhibited unique biological properties in these functional assays. Even though gelatin can be spun into fibrillar scaffolds that resemble scaffolds of esC, our assays reveal that electrospun gelatin (esG) lacks intact α chains and is composed of proinflammatory peptide fragments. In contrast, esC retains intact α chains and is enriched in the α 2(I) subunit. The distinct fundamental properties of the constituent subunits that make up esC and esG appear to define their biological and functional properties.

The Review on Electrospun Gelatin Fiber Scaffold

Journal of Research Updates in Polymer Science, 2012

The fabrication of the Guided Tissue Regeneration (GTR) membrane materials have become the key technique of the tissue engineering scaffold study. The cells adhere well on the fibers whose dimension is below their own so that the porous three dimension scaffold material can mimic the strueture of the natural extracellular matrix better and have the potential to be an ideal GTR membrane material. Gelatin, a kind of protein obtained from hydrolyzed and denatured animal skin, is a condensation polymer of a variety of amino acids and so it is a kind of bio-polymer with good water-solubility. Gelatin fiber mats with submicro and nanometer scale can simulate extracellular matrix structure of the human tissues and organs and can be used widely in the tissue engineering field because of their excellent bio-affinity. Electrospinning is a very attractive method for preparing polymer or composite nanofibers and so electrospinning technique was developed to prepare nanofibrous gelatin matrix. The electrospun of gelatin to fabricate the scaffold material has obtained more attention recently because of its biocompatibility, high surface area-to-volume ratio, degradability and less immunogenic property. The structure and performance of the electrospinning gelatin fiber mats which were manufactured by different solvents, electrospinning process, cross-linking process were reviewed. The properties and application of the two-component and multicomponent gelatin fiber mats were analyzed.

Evaluation of Cross-Linking Methods for Electrospun Gelatin on Cell Growth and Viability

Biomacromolecules, 2009

The creation of a tissue engineering scaffold via electrospinning that has minimal toxicity and uses a solvent system composed of solvents with low toxicity and different cross-linking agents was investigated. First, a solvent system of acetic acid/ethyl acetate/water (50:30:20) with gelatin as a solute was evaluated. The optimum system for electrospinning a scaffold with the desired properties resulted from a gelatin concentration of 10 wt %. Several different methods were used to cross-link the electrospun gelatin fibers, including vapor-phase glutaraldehyde, aqueous phase genipin, and glyceraldehyde, as well as reactive oxygen species from a plasma cleaner. Because glutaraldehyde at high concentrations has been shown to be toxic, we explored other cross-linking methods. Using reactive oxygen species from a plasma cleaner is an easy alternative; however, the degradation reaction dominated the cross-linking reaction and the scaffolds degraded after only a few hours in aqueous medium at 37°C. Glyceraldehyde and genipin were established as good options for cross-linking agents because of the low toxicity of these cross-linkers and the resistance to dissolution of the cross-linked fibers in cell culture medium at 37°C. MG63 osteoblastic cells were grown on each of the cross-linked scaffolds. A proliferation assay showed that the cells proliferated as well or better on the cross-linked scaffolds than on traditional two-dimensional polystyrene culture plates.

Tailoring the gelatin/chitosan electrospun scaffold for application in skin tissue engineering: an in vitro study

Progress in Biomaterials, 2018

The nanofibrous structure containing protein and polysaccharide has good potential in tissue engineering. The present work aims to study the role of chitosan in gelatin/chitosan nanofibrous scaffolds fabricated through electrospinning process under optimized condition. The performance of chitosan in gelatin/chitosan nanofibrous scaffolds was evaluated by mechanical tests, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and in vitro cell culture on scaffolds with different gelatin/chitosan blend ratios. To assay the influence of chitosan ratio on biocompatibility of the electrospun gelatin/chitosan scaffolds for skin tissue engineering, the culturing of the human dermal fibroblast cells (HDF) on nanofibers in terms of attachment, morphology and proliferation was evaluated. Morphological observation showed that HDF cells were attached and spread well on highly porous gelatin/chitosan nanofibrous scaffolds displaying spindle-like shapes and stretching. The fibrous morphologies of electrospun gelatin/chitosan scaffolds in culture medium were maintained during 7 days. Cell proliferation on electrospun gelatin/chitosan scaffolds was quantified by MTS assay, which revealed the positive effect of chitosan content (around 30%) as well as the nanofibrous structure on the biocompatibility (cell proliferation and attachment) of substrates.

Investigating processing techniques for bovine gelatin electrospun scaffolds for bone tissue regeneration

Journal of Biomedical Materials Research Part B, 2016

Tissue engineering has emerged as a promising solution to tissue regeneration in the case of significant bone loss due to disease or injury. The ability to promote cellular attachment, migration, and differentiation into tissue is dependent on the scaffold's surface properties and composition. Bovine gelatin is a natural polymer commonly used as a scaffolding material for tissue engineering applications. Nonetheless, due to the hydrophilic behavior of gelatin, cross-linking and additives are necessary to maintain the scaffold's structure and overall strength in vivo. In this article, we discuss various processing techniques to determine the optimal electrospinning, cross-linking, sintering, and mineralization parameters necessary to yield a porous, mechanically enhanced scaffold. The scaffolds were evaluated quantitatively using compressive mechanical testing, and qualitatively using scanning electron microscopy (SEM). Mechanical data concluded the use of biocompatible microbial transglutaminase (mTG) as a cross-linking agent, led to increased compressive strength. SEM images confirmed the presence of individual gelatin and polymeric nanofibers woven into one scaffold. Sintering before leaching the scaffold yielded structured pores throughout the three-dimensional scaffold when compared to the scaffolds that were leached prior to sintering. The results presented in this article will provide novel information about processing techniques that can be utilized to develop a hybrid synthetic and biological based biomimetic mineralized scaffold for trabecular bone tissue regeneration. V

A review of key challenges of electrospun scaffolds for tissue-engineering applications

Journal of Tissue Engineering and Regenerative Medicine, 2015

Tissue engineering holds great promise to develop functional constructs resembling the structural organization of native tissues to improve or replace biological functions, with the ultimate goal of avoiding organ transplantation. In tissue engineering, cells are often seeded into artificial structures capable of supporting three-dimensional (3D) tissue formation. An optimal scaffold for tissueengineering applications should mimic the mechanical and functional properties of the extracellular matrix (ECM) of those tissues to be regenerated. Amongst the various scaffolding techniques, electrospinning is an outstanding one which is capable of producing non-woven fibrous structures with dimensional constituents similar to those of ECM fibres. In recent years, electrospinning has gained widespread interest as a potential tissue-engineering scaffolding technique and has been discussed in detail in many studies. So why this review? Apart from their clear advantages and extensive use, electrospun scaffolds encounter some practical limitations, such as scarce cell infiltration and inadequate mechanical strength for load-bearing applications. A number of solutions have been offered by different research groups to overcome the above-mentioned limitations. In this review, we provide an overview of the limitations of electrospinning as a tissue-engineered scaffolding technique, with emphasis on possible resolutions of those issues. /term grounded points for fibre attachment and structural packing density. (d) Electrospinning in wet media; using a metal bath filled with liquid medium as a grounded collector induces large spaces between the forming fibres and lessens packing density. (e) Applying a postprocessing modification; laser irradiation over an electrospun scaffold can create a desirable pore structure Challenges regarding electrospun scaffolds: a review Figure 4. Schematic illustration indicating various approaches for improving cell infiltration into the electrospun scaffold. (a) Biological factors inclusion within an electrospun scaffold; association of biochemical cues, such as chemokine gradient, cell-friendly natural polymers, etc., with an electrospun scaffold encourages cell migration into the interior part. (b) Cell electrospraying and cell layering; direct incorporation of cells among fibres or fibrous layers creates a fully cell-laden electrospun structure. (c) Creating dynamic cell culture condition; agitation of the culture medium via dynamic culture enhances nutrient-waste exchange and drives cells to the interior parts. (d) Combining electrospinning with other scaffold fabrication methods; associating electrospun fibres with hydrogel creates a highly ECM-mimicking composite with the desirable cell infiltration Challenges regarding electrospun scaffolds: a review

Co‐electrospun poly (lactide‐co‐glycolide), gelatin, and elastin blends for tissue engineering scaffolds

… Research Part A, 2006

Engineering functional three-dimensional (3-D) tissue constructs for the replacement and/or repair of damaged native tissues using cells and scaffolds is one of the ultimate goals of tissue engineering. In this study, non-woven fibrous scaffolds were electrospun from the synthetic biodegradable polymer poly(lactic-co-glycolic acid) (PLGA) and natural proteins, gelatin (denatured collagen) and elastin. In the absence of cross-linking agent, the average PGE fiber diameter increased from 347 ± 103 nm to 999 ± 123 nm upon wetting as measured by scanning electron microscopy. Rat bone marrow stromal cells (rBMSC) were used paradigmatically to study the 3-D cell culture properties of PGE scaffolds. Consistent with the observed properties of the individual fibers, PGE scaffolds initially swelled in aqueous culture medium, however rBMSC seeded PGE scaffolds contracted to < 50% of original size. Time course histological analysis demonstrated uniform seeding of rBMSC into PGE scaffolds and complete cell penetration into the fibrous architecture over 4 weeks of in vitro culture.

Collagen-Based Electrospun Materials for Tissue Engineering: A Systematic Review

Bioengineering, 2021

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based ...