Pick and release of micro-objects: An actuation-free method to change the conformity of a capillary contact (original) (raw)

Reliable and Accurate Release of Micro-Sized Objects with a Gripper that Uses the Capillary-Force Method

Micromachines

There have been recent developments in grippers that are based on capillary force and condensed water droplets. These are used for manipulating micro-sized objects. Recently, one-finger grippers have been produced that are able to reliably grip using the capillary force. To release objects, either the van der Waals, gravitational or inertial-forces method is used. This article presents methods for reliably gripping and releasing micro-objects using the capillary force. The moisture from the surrounding air is condensed into a thin layer of water on the contact surfaces of the objects. From the thin layer of water, a water meniscus between the micro-sized object, the gripper and the releasing surface is created. Consequently, the water meniscus between the object and the releasing surface produces a high enough capillary force to release the micro-sized object from the tip of the one-finger gripper. In this case, either polystyrene, glass beads with diameters between 5–60 µm, or irre...

Hybrid Two-Scale Fabrication of Sub-Millimetric Capillary Grippers

Micromachines, 2019

Capillary gripping is a pick-and-place technique that is particularly well-suited for handling sub-millimetric components. Nevertheless, integrating a fluid supply and release mechanism becomes increasingly difficult to manufacture for these scales. In the present contribution, two hybrid manufacturing procedures are introduced in which the creation of the smallest features is decoupled from the macro-scale components. In the first procedure, small scale features are printed directly (by two-photon polymerisation) on top of a 3D-printed device (through stereolithography). In the second approach, directional ultraviolet (UV)-illumination and an adapted design allowed for successful (polydimethylsiloxane, PDMS) moulding of the microscopic gripper head on top of a metal substrate. Importantly, a fully functional microchannel is present in both cases through which liquid to grip the components can be supplied and retracted. This capability of removing the liquid combined with an asymmetric pillar design allows for a passive release mechanism with a placement precision on the order of 3% of the component size.

Influence of geometrical parameters on capillary forces

2007 IEEE International Symposium on Assembly and Manufacturing, 2007

As miniaturization of objects and systems is further carried on, adhesion appears to be one major problem during the assembly and/or fabrication of micro-components.

Manipulation of micro-objects using adhesion forces and dynamical effects

2003

This paper describes a dynamical strategy for releasing micro objects picked-up by means of adhesion forces. While sticking effects are used in order to capture an object by adequately choosing a high surface energy constitutive material for the end-effector, these same effects handicap considerably the release. We propose to take advantage of the inertial effects of both the end-effector and the manipulated object to overbalance adhesion forces and to achieve the release. Simulations show that for this purpose, accelerations as high as 10 5 m/s 2 are needed. Successful manipulation of a 40µm radius glass sphere is experimented.

Fabrication of three-dimensional microstructures using capillary forces

IEEE Transactions on Aerospace and Electronic Systems, 2009

In this paper we describe the fabrication of threedimensional microstructures by means of capillary forces. Using an origami-like technique, planar structures are folded to produce 3D-objects. To this purpose use is made of capillary interactions and surface tension forces. Capillarity is a particularly effective mechanism since it becomes dominant at small scales (where surface tension forces dominate over bulk forces),

Development of Micro-Grippers for Tissue and Cell Manipulation with Direct Morphological Comparison

Micromachines, 2015

Although tissue and cell manipulation nowadays is a common task in biomedical analysis, there are still many different ways to accomplish it, most of which are still not sufficiently general, inexpensive, accurate, efficient or effective. Several problems arise both for in vivo or in vitro analysis, such as the maximum overall size of the device and the gripper jaws (like in minimally-invasive open biopsy) or very limited manipulating capability, degrees of freedom or dexterity (like in tissues or cell-handling operations). This paper presents a new approach to tissue and cell manipulation, which employs a conceptually new conjugate surfaces flexure hinge (CSFH) silicon MEMS-based technology micro-gripper that solves most of the above-mentioned problems. The article describes all of the phases of the development, including topology conception, structural design, simulation, construction, actuation testing and in vitro observation. The latter phase deals with the assessment of the function capability, which consists of taking a series of in vitro images by optical microscopy. They offer a direct morphological comparison between the gripper and a variety of tissues.

Capillary-Induced Contact Guidance

Langmuir, 2007

Topographical features are known to impose capillary forces on liquid droplets, and this phenomenon is exploited in applications such as printing, coatings, textiles and microfluidics. Surface topographies also influence the behavior of biological cells (i.e., contact guidance), with implications ranging from medicine to agriculture. An accurate physical description of how cells detect and respond to surface topographies is necessary in order to move beyond a purely heuristic approach to optimizing the topographies of biomaterial interfaces. Here, we have used a combination of Langmuir-Blodgett lithography and nanoimprinting to generate a range of synthetic microstructured surfaces with grooves of subcellular dimensions in order to investigate the influence of capillary forces on the biological process of contact guidance. The physical-chemical properties of these surfaces were assessed by measuring the anisotropic spreading of sessile water droplets. Having established the physical properties of each surface, we then investigated the influence of capillary forces on the processes of cellular contact guidance in biological organisms, using mammalian osteoblasts and germinating fungal spores as tester organisms. Our results demonstrate that capillary effects are present in topographical contact guidance and should therefore be considered in any physical model that seeks to predict how cells will respond to a particular surface topography.

Switchable capillary and drainage containers for programmable three-dimensional liquid manipulation

Capillarity-guided liquid manipulations are ubiquitous in nature. Multifarious bioinspired capillary microfluidic devices have been developed to control different liquid behaviors. However, current capillary systems still suffer substantial limitations in flexible three-dimensional (3D) liquid manipulation, especially in reversible liquid capture and release, programmable 3D liquid patterning, and large-scale multi-liquid manipulation. Here, we propose “switchable capillary and drainage containers” composed of connected frame units for versatile programmable 3D liquid manipulation. A small difference in the frame connections induces vastly distinct liquid behaviors, namely, liquid capture in capillary containers and liquid release in drainage containers. Liquid capture or release can be reversibly switched by establishing or breaking the liquid continuity between containers. Using predefined frame connections allows programmable 3D patterning of unary and binary liquids, enabling pa...

Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets

Applied Physics Letters, 2014

Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles. V