Identification of a Carboxylic Acid Metabolite from the Catabolism of Fluoranthene by a Mycobacterium sp (original) (raw)

Identification of a Carboxylic Acid Metabolite from the Catabolism of Fluoranthene by a Mycobacterium sp

Applied and Environmental Microbiology, 1991

A Mycobacterium sp. previously isolated from oil-contaminated estuarine sediments was capable of extensively mineralizing the high-molecular-weight polycyclic aromatic hydrocarbon fluoranthene. A carboxylic acid metabolite accumulated and was isolated by thin-layer and high-pressure liquid chromatographic analyses of ethyl acetate extracts from acidified culture media. The metabolite reached a maximum concentration of approximately 0.65% after 24 h of incubation. On the basis of comparisons with authentic compound in which we used UV and fluorescence spectrophotometry and R f values, as well as mass spectral and proton and carbon nuclear magnetic resonance spectral analyses, the metabolite was identified as 9-fluorenone-1-carboxylic acid. This is the first report in a microbial system of a fluoranthene metabolite in which significant degradation of one of the aromatic rings has occurred.

Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1

Applied and Environmental Microbiology, 1993

Mycobactenium sp. strain PYR-1, previously shown to extensively mineralize high-molecular-weight polycyclic aromatic hydrocarbons in pure culture and in sediments, degrades fluoranthene to 9-fluorenone-1carboxylic acid. In this study, 10 other fluoranthene metabolites were isolated from ethyl acetate extracts of the culture medium by thin-layer and high-performance liquid chromatographic methods. On the basis of comparisons with authentic compounds by UV spectrophotometry and thin-layer chromatography as well as gas chromatography-mass spectral and proton nuclear magnetic resonance spectral analyses, the metabolites were identified as 8-hydroxy-7-methoxyfluoranthene, 9-hydroxyfluorene, 9-fluorenone, 1-acenaphthenone, 9-hydroxy-1-fluorenecarboxylic acid, phthalic acid, 2-carboxybenzaldehyde, benzoic acid, phenylacetic acid, and adipic acid. Authentic 9-hydroxyfluorene and 9-fluorenone were metabolized by Mycobacterium sp. strain PYR-1. A pathway for the catabolism of fluoranthene by Mycobacterium sp. strain PYR-1 is proposed.

Fluoranthene metabolism in Mycobacterium sp. strain KR20: identity of pathway intermediates during degradation and growth

Microbiology (Reading, England), 2001

Mycobacterium sp. strain KR20, which was isolated from a polycyclic aromatic hydrocarbon (PAH) contaminated soil of a former gaswork plant site, metabolized about 60% of the fluoranthene added (0.5 mg ml(-1)) to batch cultures in mineral salts medium within 10 d at 20 degrees C. It thereby increased its cell number about 30-fold and produced at least seven metabolites. Five metabolites, namely cis-2,3-fluoranthene dihydrodiol, Z-9-carboxymethylene-fluorene-1-carboxylic acid, cis-1,9a-dihydroxy-1-hydro-fluorene-9-one-8-carboxylic acid, 4-hydroxybenzochromene-6-one-7-carboxylic acid and benzene-1,2,3-tricarboxylic acid, could be identified by NMR and MS spectroscopic techniques and ascribed to an alternative fluoranthene degradation pathway. Besides fluoranthene, the isolate could not use any of the PAHs tested as a sole source of carbon and energy.

A Polyomic Approach To Elucidate the Fluoranthene-Degradative Pathway in Mycobacterium vanbaalenii PYR-1

Journal of Bacteriology, 2007

Mycobacterium vanbaalenii PYR-1 is capable of degrading a wide range of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), including fluoranthene. We used a combination of metabolomic, genomic, and proteomic technologies to investigate fluoranthene degradation in this strain. Thirty-seven fluoranthene metabolites including potential isomers were isolated from the culture medium and analyzed by high-performance liquid chromatography, gas chromatography-mass spectrometry, and UV-visible absorption. Total proteins were separated by one-dimensional gel and analyzed by liquid chromatography-tandem mass spectrometry in conjunction with the M. vanbaalenii PYR-1 genome sequence ( http://jgi.doe.gov ), which resulted in the identification of 1,122 proteins. Among them, 53 enzymes were determined to be likely involved in fluoranthene degradation. We integrated the metabolic information with the genomic and proteomic results and proposed pathways for the degradation of fluoranthene...

Metabolite Production in Degradation of Pyrene Alone or in a Mixture with Another Polycyclic Aromatic Hydrocarbon by Mycobacterium SP

Environmental Toxicology and Chemistry, 2006

Degradation of pyrene (PYR) alone and in the presence of phenanthrene or fluoranthene by Mycobacterium sp. strain A1-PYR isolated from mangrove sediments was investigated. When PYR was the only polycyclic aromatic hydrocarbon compound and the sole carbon source, only 33% of the added PYR was slowly degraded during 7 d of incubation. Seven metabolites were obtained, including four-ring metabolites (monohydroxypyrene and three different dihydroxypyrenes) and three-ring metabolites (dihydroxyphenanthrene, 4-phenanthrene-carboxylic acid, and 4-phenanthrol), of which more four-ring metabolites accumulated compared with three-ring metabolites. To our knowledge, this is the first report in which PYR was initially attacked by Mycobacterium sp. to form three different dihydroxypyrenes. Pyrene degradation was significantly stimulated when mixed with phenanthrene or fluoranthene. In the presence of fluoranthene, PYR was rapidly degraded (up to 57%), and significant amounts of dihydroxypyrene were formed within 3 d of incubation, followed by a period of minimal PYR degradation from 3 to 7 d with disappearance of fourring metabolites and accumulation of three-ring metabolites. In contrast, PYR was removed completely, and little evidence of metabolites was detected in the presence of phenanthrene. These results showed that PYR was degraded to a larger extent when mixed with another polycyclic aromatic hydrocarbon concomitant with a higher turnover of PYR metabolites. The induction of complex enzyme systems and increase in biomass possibly affected the transformation of PYR metabolites in the mixture with phenanthrene or fluoranthene.

Identification of a Novel Metabolite in the Degradation of Pyrene by Mycobacterium sp. Strain AP1: Actions of the Isolate on Two- and Three-Ring Polycyclic Aromatic Hydrocarbons

Applied and Environmental Microbiology, 2001

Mycobacterium sp. strain AP1 grew with pyrene as a sole source of carbon and energy. The identification of metabolites accumulating during growth suggests that this strain initiates its attack on pyrene by either monooxygenation or dioxygenation at its C-4, C-5 positions to give trans-or cis-4,5-dihydroxy-4,5-dihydropyrene, respectively. Dehydrogenation of the latter, ortho cleavage of the resulting diol to form phenanthrene 4,5-dicarboxylic acid, and subsequent decarboxylation to phenanthrene 4-carboxylic acid lead to degradation of the phenanthrene 4-carboxylic acid via phthalate. A novel metabolite identified as 6,6-dihydroxy-2,2biphenyl dicarboxylic acid demonstrates a new branch in the pathway that involves the cleavage of both central rings of pyrene. In addition to pyrene, strain AP1 utilized hexadecane, phenanthrene, and fluoranthene for growth. Pyrene-grown cells oxidized the methylenic groups of fluorene and acenaphthene and catalyzed the dihydroxylation and ortho cleavage of one of the rings of naphthalene and phenanthrene to give 2-carboxycinnamic and diphenic acids, respectively. The catabolic versatility of strain AP1 and its use of ortho cleavage mechanisms during the degradation of polycyclic aromatic hydrocarbons (PAHs) give new insight into the role that pyrene-degrading bacterial strains may play in the environmental fate of PAH mixtures.

Production of metabolites in the biodegradation of phenanthrene, fluoranthene and pyrene by the mixed culture of Mycobacterium sp. and Sphingomonas sp

Bioresource Technology, 2011

The effects of the mixed culture of Mycobacterium sp. strain A1-PYR and Sphingomonas sp. strain PheB4 on the degradation characteristics of single polycyclic aromatic hydrocarbon were investigated. In the mixed bacterial culture, phenanthrene, fluoranthene and pyrene were degraded by 100% at Day 3, 71.2% and 50% at Day 7, respectively. Compared to their respective pure cultures, the degradation of phenanthrene and fluoranthene decreased, but that of pyrene increased significantly. Based on GC-MS analysis, eight and six new metabolites were produced from the biodegradation of phenanthrene and fluoranthene, respectively, while only two new metabolites were formed from pyrene. To our knowledge, this is the first report that the mixed bacterial culture could increase the diversity of metabolites from PAH, but the diverse metabolite pattern was not necessarily beneficial to the degradation of the recalcitrant PAH. The enhancement on pyrene degradation was possibly attributed to the rapid growth of strain PheB4.