Transforming growth factor beta 1 signaling is altered in the spinal cord and muscle of amyotrophic lateral sclerosis mice and patients (original) (raw)
Related papers
Multiple Roles of Transforming Growth Factor Beta in Amyotrophic Lateral Sclerosis
International Journal of Molecular Sciences
Transforming growth factor beta (TGFB) is a pleiotropic cytokine known to be dysregulated in many neurodegenerative disorders and particularly in amyotrophic lateral sclerosis (ALS). This motor neuronal disease is non-cell autonomous, as it affects not only motor neurons but also the surrounding glial cells, and the target skeletal muscle fibers. Here, we analyze the multiple roles of TGFB in these cell types, and how TGFB signaling is altered in ALS tissues. Data reported support a crucial involvement of TGFB in the etiology and progression of ALS, leading us to hypothesize that an imbalance of TGFB signaling, diminished at the pre-symptomatic stage and then increased with time, could be linked to ALS progression. A reduced stimulation of the TGFB pathway at the beginning of disease blocks its neuroprotective effects and promotes glutamate excitotoxicity. At later disease stages, the persistent activation of the TGFB pathway promotes an excessive microglial activation and strengthe...
Journal of Neural Transmission, 1994
Neurotrophic factors are important for neuronal survival and maintenance in the adult nervous system. The regional distribution of insulin-like growth factor-1 (IGF-1) receptors in human spinal cords from controls and amyotrophic lateral sclerosis (ALS) patients was studied by immunohistochemistry and quantitative autoradiography. When comparing 125I-IGF-1 binding in the different spinal levels of normal spinal cord the same distribution pattern was found in which the binding was highest in the central canal > dorsal horn > ventral horn > white matter. In the ALS cases although a general upregulation of IGF-l receptors was observed throughout the spinal cord, significant increases were observed in the cervical and sacral segments compared to controls. IGF-1 receptor immunoreactivity showed a similar pattern to that for 125I-IGF-1 binding, with immunoreactivity being found in the gray matter of the spinal cord and enhanced immunoreactivity occuring in ALS patients compared to controls. In agreement with the distribution of IGF-1 receptors, IGF-1 immunoreactivity was found within the gray matter of the spinal cord. The cartography of IGF-1 receptors in the normal spinal cord as well as the change of these receptors in diseased spinal cord may be of importance in future treatment strategies of ALS.
Neuroscience, 2010
It has been reported that an early activation of glial fibrillary acid protein (GFAP) in astroglial cells occurs simultaneously in peripheral nerves and spinal cord from the G93A SOD1 mouse model of amyotrophic lateral sclerosis (ALS), an invariably fatal neurodegenerative disorder. In ALS, the contribute to the pathological process of different cell types varies according to the disease stage, with a florid immune response in spinal cord at end stage disease. In this study, we have mapped in different anatomical sites the process of disease-induced functional perturbation from a pre-symptomatic stage using a marker of cellular distress expressed in neurons and glial cells, the activating transcription factor 3 (ATF-3), and applied large-scale gene expression analysis to define the pattern or transcriptional changes occurring in spinal cord from the G93A SOD1 rat model of ALS in parallel with ATF-3 neuronal activation. From the disease onset onward, transgenic lumbar spinal cord displayed ATF-3 transcriptional regulation and motor cells immunostaining in association with the over-expression of genes promoting cell growth, the functional integrity of cell organelles and involved in the modulation of immune responses. While spinal cord from the pre-symptomatic rat showed no detectable ATF-3 transcriptional regulation, ATF-3 activation was appreciated in large size neurofilament-rich, small size non-peptidergic and parvalbumin-positive neurons within the dorsal root ganglia (DRG), and in ventral roots Schwann cells alongside macrophages infiltration. This pattern of peripheral ATF-3 activation remained detectable throughout the disease process. In the G93A SOD1 rat model of ALS, signs of roots and nerves subtle distress preceded overt clinical-pathological changes, involving both glial cells and neurons that function as receptors of peripheral sensory stimuli from the muscle. In addition, factors previously described to be linked to ATF-3 activation under various experimental conditions of stress, become switched on in spinal cord from the end-stage transgenic rat model of ALS.
Roles of Vascular Endothelial Growth Factor in Amyotrophic Lateral Sclerosis
BioMed Research International, 2014
Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will...
Muscle & Nerve, 2012
Introduction: Adult muscle fibers are a source of growth factors, including insulin-like growth factor-1 (IGF-1). These factors influence neuronal survival, axonal growth, and maintenance of synaptic connections. Methods: We investigated the components of the IGF system in skeletal muscle samples obtained from 17 sporadic amyotrophic lateral sclerosis patients (sALS) and 29 control subjects (17 with normal muscle and 12 with denervated muscle unrelated to ALS). Results: The muscle expression of IGF-1 and IGF-binding proteins 3, 4, and 5 (IGF-BP3,-4, and-5, respectively), assessed by immunohistochemistry, was differently decreased in sALS compared with both control groups; conversely, IGF-1 receptor b subunit (IGF-1Rb) was significantly increased. Western blot analysis confirmed the severe reduction of IGF-1, IGF-BP3, and-BP5 with the increment of IGF-1Rb in sALS. Conclusion: In this study we describe the abnormal expression of the IGF-1 system in skeletal muscle of sALS patients that could participate in motor neuron degeneration and should be taken into account when developing treatments with IGF-1.
European Journal of Neuroscience, 2019
We have previously shown that total knockout of fibroblast growth factor-2 (FGF-2) results in prolonged survival and improved motor performance in superoxide dismutase 1 (SOD1 G93A) mutant mice, the most widely used animal model of the fatal adult onset motor neuron disease amyotrophic lateral sclerosis (ALS). Moreover, we found differential expression of growth factors in SOD1 G93A mice, with distinct regulation patterns of FGF-2 in spinal cord and muscle tissue. Within the present study we aimed to characterize FGF-2-isoform specific effects on survival, motor performance as well as gene expression patterns predominantly in muscle tissue by generating double mutant SOD1 G93A FGF-2 high molecular weight-and SOD1 G93A FGF-2 low molecular weight knockout mice. While isoform specific depletion was not beneficial regarding survival or motor performance of double mutant mice, we found isoform-dependent differential gene expression of epidermal growth factor (EGF) in muscle of SOD1 G93A FGF-2 low molecular weight knockout mice compared to single mutant SOD1 G93A mice. This significant downregulation of EGF in muscle tissue of double mutant SOD1 G93A FGF-2 low molecular weight knockout mice implies that FGF-2 low molecular weight knockout (or the presence of the FGF-2 high molecular weight isoform) selectively impacts EGF gene expression in ALS muscle tissue.
Journal of Neurochemistry, 2005
Fibroblast growth factor-1 (FGF1 or acidic FGF) is highly expressed in motor neurons. FGF-1 is released from cells by oxidative stress, which might occur from SOD-1 aberrant function in amyotrophic lateral sclerosis (ALS). Although FGF-1 is known to be neuroprotective after spinal cord injury or axotomy, we found that FGF-1 could activate spinal cord astrocytes in a manner that decreased motor neuron survival in co-cultures. FGF-1 induced accumulation of the FGF receptor 1 (FGFR1) in astrocyte nuclei and potently stimulated nerve growth factor (NGF) expression and secretion. The FGFR1 tyrosine kinase inhibitor PD166866 prevented these effects. Previously, we have shown that NGF secretion by reactive astrocytes induces motor neuron apoptosis through a p75 NTR -dependent mechanism. Embryonic motor neurons co-cultured on the top of astrocytes exhibiting activated FGFR1 underwent apoptosis, which was prevented by PD166866 or by adding either anti-NGF or anti-p75 NTR neutralizing antibodies. In the degenerating spinal cord of mice carrying the ALS mutation G93A of Cu, Zn superoxide dismutase, FGF-1 was no longer localized only in the cytosol of motor neurons, while FGFR1 accumulated in the nuclei of reactive astrocytes. These results suggest that FGF-1 released by oxidative stress from motor neurons might have a role in activating astrocytes, which could in turn initiate motor neuron apoptosis in ALS through a p75 NTR -dependent mechanism.
BMC Genomics, 2010
Background: Vascular endothelial growth factor (VEGF) is an endothelial cell mitogen that stimulates vasculogenesis. It has also been shown to act as a neurotrophic factor in vitro and in vivo. Deletion of the hypoxia response element of the promoter region of the gene encoding VEGF in mice causes a reduction in neural VEGF expression, and results in adult-onset motor neurone degeneration that resembles amyotrophic lateral sclerosis (ALS). Investigating the molecular pathways to neurodegeneration in the VEGF δ/δ mouse model of ALS may improve understanding of the mechanisms of motor neurone death in the human disease.
Disrupted Transforming Growth Factor Signaling in Spinal and Bulbar Muscular Atrophy
Journal of Neuroscience, 2010
Furthermore, overexpression of TRII dampens polyglutamine-induced cytotoxicity in a neuroblastoma cell line expressing the pathogenic AR. The present study thus indicates that disruption of TGF- due to the transcriptional dysregulation of TRII is associated with polyglutamine-induced motor neuron damage in SBMA.