Nitrate determines the bacterial habitat specialization and impacts microbial functions in a subsurface karst cave (original) (raw)

Abstract

Karst caves are usually considered as natural laboratories to study pristine microbiomes in subsurface biosphere. However, effects of the increasingly detected nitrate in underground karst ecosystem due to the acid rain impact on microbiota and their functions in subsurface karst caves have remained largely unknown. In this study, samples of weathered rocks and sediments were collected from the Chang Cave, Hubei province and subjected to high-throughput sequencing of 16S rRNA genes. The results showed that nitrate significantly impacted bacterial compositions, interactions, and functions in different habitats. Bacterial communities clustered according to their habitats with distinguished indicator groups identified for each individual habitat. Nitrate shaped the overall bacterial communities across two habitats with a contribution of 27.2%, whereas the pH and TOC, respectively, structured bacterial communities in weathered rocks and sediments. Alpha and beta diversities of bacterial communities increased with nitrate concentration in both habitats, with nitrate directly affecting alpha diversity in sediments, but indirectly on weathered rocks by lowering pH. Nitrate impacted more on bacterial communities in weathered rocks at the genus level than in sediments because more genera significantly correlated with nitrate concentration in weathered rocks. Diverse keystone taxa involved in nitrogen cycling were identified in the co-occurrence networks such as nitrate reducers, ammoniumoxidizers, and N 2-fixers. Tax4Fun2 analysis further confirmed the dominance of genes involved in nitrogen cycling. Genes of methane metabolism and carbon fixation were also dominant. The dominance of dissimilatory and assimilatory nitrate reduction in nitrogen cycling substantiated nitrate impact on bacterial functions. Our results for the first time revealed the impact of nitrate on subsurface karst ecosystem in terms of bacterial compositions, interactions, and functions, providing an important reference for further deciphering the disturbance of human activities on the subsurface biosphere.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (146)

  1. Addison, S. L., Foote, S. M., Reid, N. M., and Lloyd-Jones, G. (2007). Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. Int. J. Syst. Evol. Microbiol. 57, 2467-2471. doi: 10.1099/ijs.0.64627-0
  2. Ai, J., Guo, J., Li, Y., Zhong, X., Lv, Y., Li, J., et al. (2022). The diversity of microbes and prediction of their functions in karst caves under the influence of human tourism activities-a case study of Zhijin cave in Southwest China. Environ. Sci. Pollut. Res. Int. 29, 25858-25868. doi: 10.1007/s11356-021-17783-x Albuquerque, L., Franca, L., Rainey, F. A., Schumann, P., Nobre, M. F., and da Costa, M. S.
  3. Gaiella occulta gen. Nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. Nov. and Gaiellales Ord. Nov. Syst. Appl. Microbiol. 34, 595-599. doi: 10.1016/j.syapm.2011.07.001 Liu et al. 10.3389/fmicb.2023.1115449
  4. Frontiers in Microbiology 12 frontiersin.org
  5. Barton, H. A., Taylor, M. R., and Pace, N. R. (2010). Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol J. 21, 11-20. doi: 10.1080/01490450490253428
  6. Bastian, M., Heymann, S., and Jacomy, M. (2009). "Gephi: an open source software for exploring and manipulating networks," in: Proceedings of the international AAAI conference on web and social media. Vol. 3. 361-362.
  7. Berthrong, S. T., Yeager, C. M., Gallegos-Graves, L., Steven, B., Eichorst, S. A., Jackson, R. B., et al. (2014). Nitrogen fertilization has a stronger effect on soil nitrogen- fixing bacterial communities than elevated atmospheric CO 2 . Appl. Environ. Microbiol. 80, 3103-3112. doi: 10.1128/AEM.04034-13
  8. Bobbink, R., Hornung, M., and Roelofs, J. M. (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J. Ecol. 86, 717-738. doi: 10.1046/j.1365-2745.1998.8650717.x
  9. Bodelier, P. L. E., and Laanbroek, H. J. (2004). Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47, 265-277. doi: 10.1016/ s0168-6496(03)00304-0
  10. Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852-857. doi: 10.1038/ s41587-019-0209-9
  11. Bouznada, K., Bouras, N., Schumann, P., Sproer, C., Sabaou, N., and Klenk, H. P. (2016).
  12. Actinophytocola algeriensis sp. nov., an actinobacterium isolated from Saharan soil. Int. J. Syst. Evol. Microbiol. 66, 2760-2765. doi: 10.1099/ijsem.0.001136
  13. Boyer, D. G., and Pasquarell, G. C. (1996). Agricultural land use effects on nitrate concentrations in a mature karst aquifer. JAWRA J. Am. Water Resources Association 32, 565-573. doi: 10.1111/j.1752-1688.1996.tb04054.x Brenzinger, K., Dorsch, P., and Braker, G. (2015). pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. Front. Microbiol. 6:961. doi: 10.3389/ fmicb.2015.00961
  14. Campbell, B. J., Polson, S. W., Hanson, T. E., Mack, M. C., and Schuur, E. A. (2010). The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ. Microbiol. 12, 1842-1854. doi: 10.1111/j.1462-2920.2010.02189.x Cañveras, C., Sanchez-Moral, S. V., Sloer, C., and Saiz-Jimenez, J. (2001). Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J. 18, 223-240. doi: 10.1080/01490450152467769
  15. Cao, J., Cheng, X., Zeng, Z., Yang, Z., Liu, X., Wang, H., et al. (2021). Habitat specificity and co-occurrence network of bacterial communities in the Xincuntun cave, Guilin, Guangxi. Chin. Sci. Bull. 66, 4003-4016. doi: 10.1360/tb-2021-0021
  16. Cao, P., Wei, X., Wang, G., Chen, X., Han, J., and Li, Y. (2022). Microbial inoculants and garbage fermentation liquid reduced root-knot nematode disease and as uptake in Panax quinquefolium cultivation by modulating rhizosphere microbiota community. Chin. Herb. Med. 14, 58-69. doi: 10.1016/j.chmed.2021.11.001
  17. Cardoso, R. B., Sierra-Alvarez, R., Rowlette, P., Flores, E. R., Gomez, J., and Field, J. A. (2006). Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol. Bioeng. 95, 1148-1157. doi: 10.1002/bit.21084
  18. Carrasco, J., and Preston, G. M. (2020). Growing edible mushrooms: a conversation between bacteria and fungi. Environ. Microbiol. 22, 858-872. doi: 10.1111/1462-2920.14765
  19. Che, R., Deng, Y., Wang, W., Rui, Y., Zhang, J., Tahmasbian, I., et al. (2018). Long-term warming rather than grazing significantly changed total and active soil procaryotic community structures. Geoderma 316, 1-10. doi: 10.1016/j.geoderma.2017.12.005
  20. Chee-Sanford, J., Tian, D., and Sanford, R. (2019). Consumption of N2O and other N-cycle intermediates by Gemmatimonas aurantiaca strain T-27. Microbiology 165, 1345-1354. doi: 10.1099/mic.0.000847
  21. Cheng, X., Liu, X., Wang, H., Su, C., Zhao, R., Bodelier, P. L. E., et al. (2021a). USCgamma dominated community composition and cooccurrence network of methanotrophs and bacteria in subterranean karst caves. Microbiol. Spectr. 9:e0082021. doi: 10.1128/ Spectrum.00820-21
  22. Cheng, X., Yun, Y., Wang, H., Ma, L., Tian, W., Man, B., et al. (2021b). Contrasting bacterial communities and their assembly processes in karst soils under different land use. Sci. Total Environ. 751:142263. doi: 10.1016/j.scitotenv.2020.142263
  23. Chung, H., Zak, D. R., Reich, P. B., and Ellsworth, D. S. (2007). Plant species richness, elevated CO 2 , and atmospheric nitrogen deposition alter soil microbial community composition and function. Glogal Change Biol. 13, 980-989. doi: 10.1111/j.1365-2486.2007.01313.x Claassens, N. J., Sanchez-Andrea, I., Sousa, D. Z., and Bar-Even, A. (2018). Towards sustainable feedstocks: a guide to electron donors for microbial carbon fixation. Curr. Opin. Biotechnol. 50, 195-205. doi: 10.1016/j.copbio.2018.01.019
  24. Curtis, S. M., Norton, I., Everest, G. J., Pelser, J. G., de Kock, M. C., and Meyers, P. R. (2020). Development of a Kribbella-specific isolation medium and description of Kribbella capetownensis sp. nov. and Kribbella speibonae sp. nov., isolated from soil. Antonie Van Leeuwenhoek 113, 617-628. doi: 10.1007/s10482-019-01365-6
  25. Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., et al. (2015). Complete nitrification by Nitrospira bacteria. Nature 528, 504-509. doi: 10.1038/ nature16461
  26. DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069-5072. doi: 10.1128/ AEM.03006-05
  27. Dong, Y., Gao, J., Wu, Q., Ai, Y., Huang, Y., Wei, W., et al. (2020). Co-occurrence pattern and function prediction of bacterial community in karst cave. BMC Microbiol. 20:137. doi: 10.1186/s12866-020-01806-7
  28. Dunfield, P., and Knowles, R. (1995). Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Appl. Environ. Microbiol. 61, 3129-3135. doi: 10.1128/AEM.61.8.3129-3135.1995
  29. Engel, A. S. (2007). Observations on the biodiversity of sulfidic karst habitats. J. Cave Karst Studies 9, 187-206.
  30. Ettwig, K. F., Shima, S., van de Pas-Schoonen, K. T., Kahnt, J., Medema, M. H., Op Den Camp, H. J. M., et al. (2008). Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ. Microbiol. 10, 3164-3173. doi: 10.1111/j.1462-2920.2008.01724.x Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S. M., and Kartal, B. (2016). Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc. Natl. Acad. Sci. U. S. A. 113, 12792-12796. doi: 10.1073/pnas.1609534113
  31. Falagan, C., and Johnson, D. B. (2014). Acidibacter ferrireducens gen. Nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles 18, 1067-1073. doi: 10.1007/s00792-014-0684-3
  32. Fan, K., Weisenhorn, P., Gilbert, J. A., and Chu, H. (2018). Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol. Biochem. 125, 251-260. doi: 10.1016/j.soilbio.2018.07.022
  33. Faust, B. (1949). The formation of saltpeter in caves. Bull. Natl. Speleological Soc. 11, 17-23.
  34. Faust, B. (1968). Notes on the subterranean accumulation of saltpetre. J. Spelean. Hist. 1, 3-11. Fierer, N., and Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103, 626-631. doi: 10.1073/ pnas.0507535103
  35. Fierer, N., Lauber, C. L., Ramirez, K. S., Zaneveld, J., Bradford, M. A., and Knight, R. (2012a). Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007-1017. doi: 10.1038/ ismej.2011.159
  36. Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., et al. (2012b). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. U. S. A. 109, 21390-21395. doi: 10.1073/ pnas.1215210110
  37. Filippini, G., Bugnot, A. B., Johnston, E. L., Ruszczyk, J., Potts, J., Scanes, P., et al. (2019). Sediment bacterial communities associated with environmental factors in intermittently closed and Open Lakes and lagoons (ICOLLs). Sci. Total Environ. 693:133462. doi: 10.1016/j.scitotenv.2019.07.268
  38. Fu, Y., Kumar, A., Chen, L., Jiang, Y., Ling, N., Wang, R., et al. (2021). Rhizosphere microbiome modulated effects of biochar on ryegrass 15N uptake and rhizodeposited 13 C allocation in soil. Plant Soil 463, 359-377. doi: 10.1007/s11104-021-04845-9
  39. Gao, Y., Yuan, L., Du, J., Wang, H., Yang, X., Duan, L., et al. (2022). Bacterial community profile of the crude oil-contaminated saline soil in the Yellow River Delta natural reserve, China. Chemosphere 289:133207. doi: 10.1016/j.chemosphere.2021.133207
  40. Gonzalez-Pimentel, J. L., Martin-Pozas, T., Jurado, V., Miller, A. Z., Caldeira, A. T., Fernandez-Lorenzo, O., et al. (2021). Prokaryotic communities from a lava tube cave in La Palma Island (Spain) are involved in the biogeochemical cycle of major elements. PeerJ 9:e11386. doi: 10.7717/peerj.11386
  41. Guerrero-Cruz, S., Stultiens, K., van Kessel, M. A. H. J., Versantvoort, W., Jetten, M. S. M., Op den Camp, H. J. M., et al. (2019). Key physiology of a nitrite-dependent methane- oxidizing enrichment culture. Environ. Microbiol. 85:e00124-19. doi: 10.1128/ AEM.00124-19
  42. Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., et al. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500, 567-570. doi: 10.1038/nature12375
  43. Heidrich, V., and Beule, L. (2022). Are short-read amplicons suitable for the prediction of microbiome functional potential? A critical perspective. iMeta 1:e38. doi: 10.1002/imt2.38
  44. Hess, W. H. (1900). The origin of nitrates in cavern earths. J. Geol. 8, 129-134. doi: 10.1086/620781
  45. Hester, E. R., Harpenslager, S. F., Diggelen, J. M. H. V., Lamers, L. L., Jetten, M. S. M., Lüke, C., et al. (2018). Linking nitrogen load to the structure and function of wetland soil and Rhizosphere microbial communities. mSystems 3, e00214-e00217. doi: 10.1128/ mSystems.00214-17
  46. Heylen, K., and Keltjens, J. (2012). Redundancy and modularity in membrane-associated dissimilatory nitrate reduction in bacillus. Front. Microbiol. 3:371. doi: 10.3389/ fmicb.2012.00371
  47. Hill, C. A. (1981). Origin of cave saltpeter. J. Geol. 89, 252-259. doi: 10.1086/628584
  48. Hill, C. A. (1987). Geology of Carlsbad cavern and other caves in the Guadalupe Mountains, New Mexico and Texas New Mexico Bur Mines Miner Resour Bull 117. Socorro, NM: New Mexico Bureau of Mines and Mineral Resources. 150.
  49. Hill, C., Eller, P., Fliermans, C., and Hauer, P. (1983). Saltpeter conversion and the origin of cave nitrates. Nat. Geogr. Soc. Res. Rep. 15, 295-309. Frontiers in Microbiology 13 frontiersin.org
  50. Hirsch, P. R., and Mauchline, T. H. (2015). The importance of the microbial N cycle in soil for crop plant nutrition. Adv. Appl. Microbiol. 93, 45-71. doi: 10.1016/bs. aambs.2015.09.001
  51. Holmes, A. J., Tujula, N. A., Holley, M., Contos, A., James, J. M., Rogers, P., et al. (2001). Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ. Microbiol. 3, 256-264. doi: 10.1046/j.1462-2920.2001.00187.x Hu, Y., Chen, M., Yang, Z., Cong, M., Zhu, X., and Jia, H. (2021). Soil microbial community response to nitrogen application on a swamp meadow in the arid region of Central Asia. Front. Microbiol. 12:797306. doi: 10.3389/fmicb.2021.797306
  52. Hugler, M., Menendez, C., Schagger, H., and Fuchs, G. (2002). Malonyl-coenzyme a reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO 2 fixation. J. Bacteriol. 184, 2404-2410. doi: 10.1128/ JB.184.9.2404-2410.2002
  53. Iwata, K., Azlan, A., Yamakawa, H., and Omori, T. (2010). Ammonia accumulation in culture broth by the novel nitrogen-fixing bacterium, Lysobacter sp. E4. J. Biosci. Bioeng. 110, 415-418. doi: 10.1016/j.jbiosc.2010.05.006
  54. Jia, Y., Yu, G., Gao, Y., He, N., Wang, Q., Jiao, C., et al. (2016). Global inorganic nitrogen dry deposition inferred from ground-and space-based measurements. Sci. Rep. 6:19810. doi: 10.1038/srep19810
  55. Jia, Y., Yu, G., He, N., Zhan, X., Fang, H., Sheng, W., et al. (2014). Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci. Rep. 4:3763. doi: 10.1038/srep03763
  56. Jones, D. S., and Macalady, J. L. (2016). "The snotty and the stringy: energy for subsurface life in caves" in Their world: A diversity of microbial environments. ed. C. J. Hurst (Cham: Springer International Publishing), 203-224.
  57. Kalyuzhnaya, M. G., Bowerman, S., Lara, J. C., Lidstrom, M. E., and Chistoserdova, L. (2006). Methylotenera mobilis gen. Nov., sp. nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int. J. Syst. Evol. Microbiol. 56, 2819-2823. doi: 10.1099/ijs.0.64191-0
  58. Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., et al. (2000). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 7, 331-338. doi: 10.1093/dnares/7.6.331
  59. Kang, S. M., Khan, A. L., Hamayun, M., Hussain, J., Joo, G. J., You, Y. H., et al. (2012). Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J. Microbiol. 50, 902-909. doi: 10.1007/s12275-012-2273-4
  60. Kato, S., Shibuya, T., Takaki, Y., Hirai, M., Nunoura, T., and Suzuki, K. (2018).
  61. Genome-enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep-sea massive sulfide deposits. Environ. Microbiol. 20, 862-877. doi: 10.1111/1462-2920.14032
  62. Keulen, G. V., Alderson, J., White, J., and Sawers, R. G. (2005). Nitrate respiration in the actinomycete Streptomyces coelicolor. Biochem. Soci Trans. 33, 210-212. doi: 10.1042/ BST0330210
  63. Kimble, J. C., Winter, A. S., Spilde, M. N., Sinsabaugh, R. L., and Northup, D. E. (2018). A potential central role of Thaumarchaeota in N-cycling in a semi-arid environment, Fort Stanton cave, Snowy River passage, New Mexico, USA. FEMS Microbiol. Ecol. 94:fiy173. doi: 10.1093/femsec/fiy173
  64. King, G. M., and Schnell, S. (1998). Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soils. Appl. Environ. Microbiol. 64, 253-257. doi: 10.1128/ AEM.64.1.253-257.1998
  65. Knox, E., and Moody, D. (1991). "Influence of hydrology, soil properties, and agricultural land use on nitrogen in groundwater, " in Managing Nitrogen for Groundwater Quality and Farm Profitability. eds. R. F. Follett, D. R. Keeney and R. M. Cruse (Madison, Wis, USA: Soil Science Society of America), 19-57.
  66. Labeda, D. P., and Kroppenstedt, R. M. (2005). Stackebrandtia nassauensis gen. Nov., sp. nov. and emended description of the family Glycomycetaceae. Int. J. Syst. Evol. Microbiol. 55, 1687-1691. doi: 10.1099/ijs.0.63496-0
  67. Lavoie, K. H., Winter, A. S., Read, K. J., Hughes, E. M., Spilde, M. N., and Northup, D. E. (2017). Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from lava beds National Monument, USA. PLoS One 12:e0169339. doi: 10.1371/journal.pone.0169339
  68. Lefcheck, J. S., and Freckleton, R. (2015). PIECEWISESEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573-579. doi: 10.1111/2041-210x.12512
  69. Lewis, W. C. (1992). On the origin of cave saltpeter: a second opinion. Natl. Speleological Soc. Bull. 54, 28-30.
  70. Li, L., Dong, Y., Qian, G., Hu, X., and Ye, L. (2018). Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen. Bioresour. Technol. 258, 168-176. doi: 10.1016/j.biortech.2018.02.121
  71. Liao, J., Hu, C., Wang, M., Li, X., Ruan, J., Zhu, Y., et al. (2018). Assessing acid rain and climate effects on the temporal variation of dissolved organic matter in the unsaturated zone of a karstic system from southern China. J. Hydrol. 556, 475-487. doi: 10.1016/j. jhydrol.2017.11.043
  72. Liu, C., Dong, Y., Hou, L., Deng, N., and Jiao, R. (2017). Acidobacteria communityresponses to nitrogen dose and form in Chinese fir plantations in southern China. Curr. Microbiol. 74, 396-403. doi: 10.1007/s00284-016-1192-8
  73. Liu, L., and Greaver, T. L. (2009). A review of nitrogen enrichment effects on three biogenic GHGs: the CO 2 sink may be largely offset by stimulated N 2 O and CH 4 emission. Ecol. Lett. 12, 1103-1117. doi: 10.1111/j.1461-0248.2009.01351.x Liu, C., Jiang, Y., Tao, F., Lang, Y., and Li, S. (2008). Chemical weathering of carbonate rocks by sulfuric acid and the carbon cycling in Southwest China. Geochimica 4, 404-414. doi: 10.19700/j.0379-1726.2008.04.012
  74. Liu, J., Zhu, S., Liu, X., Yao, P., Ge, T., and Zhang, X. H. (2020). Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. ISME J. 14, 1463-1478. doi: 10.1038/s41396-020-0621-7
  75. Louca, S., Parfrey, L. W., and Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272-1277. doi: 10.1126/science.aaf4507
  76. Ma, L., Huang, X., Wang, H., Cheng, X., Liu, D., Lu, X., et al. (2021). Microbial interactions drive distinct taxonomic and potential metabolic responses to habitats in karst cave ecosystem. Microbiol. Spectr. 9, e01152-e01121. doi: 10.1128/ Spectrum.01152-21
  77. McCormick, N. E., Earle, M., Ha, C., Hakes, L., Evans, A., Anderson, L., et al. (2021). Biological and physico-chemical mechanisms accelerating the acclimation of Mn-removing biofilters. Water Res. 207:117793. doi: 10.1016/j.watres.2021.117793
  78. Mills, C. T., Slater, G. F., Dias, R. F., Carr, S. A., Reddy, C. M., Schmidt, R., et al. (2013). The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seep. FEMS Microbiol. Ecol. 84, 474-494. doi: 10.1111/1574-6941.12079
  79. Minick, K. J., Pandey, C. B., Fox, T. R., and Subedi, S. (2016). Dissimilatory nitrate reduction to ammonium and N 2 O flux: effect of soil redox potential and N fertilization in loblolly pine forests. Biol. Fertil. Soils 52, 601-614. doi: 10.1007/s00374-016-1098-4
  80. Monciardini, P., Cavaletti, L., Schumann, P., Rohde, M., and Donadio, S. (2003).
  81. Conexibacter woesei gen. Nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. Int. J. Syst. Evol. Microbiol. 53, 569-576. doi: 10.1099/ijs.0.02400-0
  82. Mongad, D. S., Chavan, N. S., Narwade, N. P., Dixit, K., Shouche, Y. S., and Dhotre, D. P. (2021). MicFunPred: a conserved approach to predict functional profiles from 16S rRNA gene sequence data. Genomics 113, 3635-3643. doi: 10.1016/j.ygeno.2021.08.016
  83. Moore, G., and Sullivan, G. (1978). "Speleology: the study of caves: Rev 2nd ed. St. Louis, MO". Cave Books, Inc.
  84. Nicomrat, D., Dick, W. A., Dopson, M., and Tuovinen, O. H. (2008). Bacterial phylogenetic diversity in a constructed wetland system treating acid coal mine drainage. Soil Biol. Biochem. 40, 312-321. doi: 10.1016/j.soilbio.2007.08.009
  85. Nie, Y., Wang, M., Zhang, W., Ni, Z., Hashidoko, Y., and Shen, W. (2018). Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment. Sci. Total Environ. 624, 407-415. doi: 10.1016/j.scitotenv.2017.12.142
  86. Norton, J. M., Klotz, M. G., Stein, L. Y., Arp, D. J., Bottomley, P. J., Chain, P. S., et al. (2008). Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment. Appl. Environ. Microbiol. 74, 3559-3572. doi: 10.1128/AEM.02722-07
  87. Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2018). Vegan: Community ecology package. R package version 2.5-2. 2018. Vienna: R Core Team. Olesen, J. M., Bascompte, J., Dupont, Y. L., and Jordano, P. (2007). The modularity of pollination networks. Proc. Natl. Acad. Sci. U. S. A. 104, 19891-19896. doi: 10.1073/ pnas.0706375104
  88. Ortiz, M., Legatzki, A., Neilson, J. W., Fryslie, B., Nelson, W. M., Wing, R. A., et al. (2014). Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME J. 8, 478-491. doi: 10.1038/ismej.2013.159
  89. Pace, N. (1971). Caves and saltpeter: a novel hypothesis for saltpeter formation. Caving in the Rockies. 13, 7-9.
  90. Palmer, K., Biasi, C., and Horn, M. A. (2012). Contrasting denitrifier communities relate to contrasting N 2 O emission patterns from acidic peat soils in arctic tundra. ISME J. 6, 1058-1077. doi: 10.1038/ismej.2011.172
  91. Palmer, K., and Horn, M. A. (2012). Actinobacterial nitrate reducers and proteobacterial denitrifiers are abundant in N 2 O-metabolizing palsa peat. Appl. Environ. Microbiol. 78, 5584-5596. doi: 10.1128/AEM.00810-12
  92. Pandey, C. B., Kumar, U., Kaviraj, M., Minick, K. J., Mishra, A. K., and Singh, J. S. (2020). DNRA: a short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. Sci. Total Environ. 738:139710. doi: 10.1016/j.scitotenv.2020.139710
  93. Parker, C., Wolf, J., Auler, A., Barton, H., and Senko, J. (2013). Microbial reducibility of Fe(III) phases associated with the genesis of iron ore caves in the iron quadrangle, Minas Gerais, Brazil. Minerals 3, 395-411. doi: 10.3390/min3040395
  94. Parks, D. H., Tyson, G. W., Hugenholtz, P., and Beiko, R. G. (2014). STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123-3124. doi: 10.1093/ bioinformatics/btu494
  95. Portillo, M. C., Alloza, R., and Gonzalez, J. M. (2009). Three different phototrophic microbial communities colonizing a single natural shelter containing prehistoric paintings. Sci. Total Environ. 407, 4876-4881. doi: 10.1016/j.scitotenv.2009.05.038
  96. Prakash, O., and Lal, R. (2006). Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int. J. Syst. Evol. Microbiol. 56, 2147-2152. doi: 10.1099/ijs.0.64080-0
  97. Liu et al. 10.3389/fmicb.2023.1115449
  98. Frontiers in Microbiology 14 frontiersin.org
  99. Pranamuda, H., Tokiwa, Y., and Tanaka, H. (1997). Polylactide degradation by an Amycolatopsis sp. Appl. Environ. Microbiol. 63, 1637-1640. doi: 10.1128/ AEM.63.4.1637-1640.1997
  100. R Core Team (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  101. Ramasamy, D., Kokcha, S., Lagier, J. C., Nguyen, T. T., Raoult, D., and Fournier, P. E.
  102. Genome sequence and description of Aeromicrobium massiliense sp. nov. Stand. Genomic Sci. 7, 246-257. doi: 10.4056/sigs.3306717
  103. Raven, J. A. (2009). Contributions of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquat. Microb. Ecol. 56, 177-192. doi: 10.3354/ame01315
  104. Raza, S., Miao, N., Wang, P., Ju, X., Chen, Z., Zhou, J., et al. (2020). Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Glob. Chang. Biol. 26, 3738-3751. doi: 10.1111/gcb.15101
  105. Ridge, J. P., Lin, M., Larsen, E. I., Fegan, M., McEwan, A. G., and Sly, L. I. (2007). A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM
  106. Environ. Microbiol. 9, 944-953. doi: 10.1111/j.1462-2920.2006.01216.x Rodriguez, V., Moskwa, L. M., Oses, R., Kuhn, P., Riveras-Munoz, N., Seguel, O., et al. (2022). Impact of climate and slope aspects on the composition of soil bacterial communities involved in pedogenetic processes along the Chilean coastal cordillera. Microorganisms 10, 1-20. doi: 10.3390/microorganisms10050847
  107. Rütting, T., Boeckx, P., Müller, C., and Klemedtsson, L. (2011). Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8, 1779-1791. doi: 10.5194/bg-8-1779-2011
  108. Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al. (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. doi: 10.1186/ gb-2011-12-6-r60
  109. Seki, T., Matsumoto, A., Shimada, R., Inahashi, Y., Omura, S., and Takahashi, Y. (2012). Conexibacter arvalis sp. nov., isolated from a cultivated field soil sample. Int. J. Syst. Evol. Microbiol. 62, 2400-2404. doi: 10.1099/ijs.0.036095-0
  110. Selensky, M. J., Masterson, A. L., Blank, J. G., Lee, S. C., and Osburn, M. R. (2021). Stable carbon isotope depletions in lipid biomarkers suggest subsurface carbon fixation in lava caves. J. Geophys. Res. Biogeosci. 126:e2021JG006430. doi: 10.1029/2021jg006430
  111. Shi, Y., Sheng, L., Wang, Z., Zhang, X., He, N., and Yu, Q. (2016). Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia. Eurasian Soil Sci. 49, 1149-1160. doi: 10.1134/s1064229316100124
  112. Shu, X., Zhang, K., Zhang, Q., and Wang, W. (2019). Ecophysiological responses of Jatropha curcas L. seedlings to simulated acid rain under different soil types. Ecotoxicol. Environ. Saf. 185:109705. doi: 10.1016/j.ecoenv.2019.109705
  113. Soons, M. B., Hefting, M. M., Dorland, E., Lamers, L. P. M., Versteeg, C., and Bobbink, R. (2017). Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. Biol. Conserv. 212, 390-397. doi: 10.1016/j.biocon.2016.12.006
  114. Spence, J., and Telmer, K. (2005). The role of sulfur in chemical weathering and atmospheric CO 2 fluxes: evidence from major ions, δ 13 C DIC , and δ 34 S SO4 in rivers of the Canadian cordillera. Geochim. Cosmochim. Acta 69, 5441-5458. doi: 10.1016/j.gca.2005.07.011
  115. Spilde, M. N., Northup, D. E., Boston, P. J., Schelble, R. T., Dano, K. E., Crossey, L. J., et al. (2005). Geomicrobiology of cave ferromanganese deposits: a field and laboratory investigation. Geomicrobiol J. 22, 99-116. doi: 10.1080/01490450590945889
  116. Stephan, M. P., Oliveira, M., Teixeira, K. R. S., Martinez-Drets, G., and Döbereiner, J. (1997). Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiol. Lett. 77, 67-72. doi: 10.1111/j.1574-6968.1991.tb04323.x Steven, B., Pollard, W. H., Greer, C. W., and Whyte, L. G. (2008). Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ. Microbiol. 10, 3388-3403. doi: 10.1111/j.1462-2920.2008.01746.x Suzuki, K. I. (2015). "Rubrobacter, " in Bergey's Manual of Systematics of Archaea and Bacteria. ed. M. Goodfellow (John Wiley & Sons, Inc.), 1-6. doi: 10.1002/9781118960608.
  117. Tian, D., and Niu, S. (2015). A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 10:024019. doi: 10.1088/1748-9326/10/2/024019
  118. Too, C. C., Ong, K. S., Lee, S. M., Yule, C. M., and Keller, A. (2018). Draft genome sequence of Dyella sp. strain C9, isolated from a Malaysian tropical peat swamp forest. Microbiol. Resour. Announc. 7:e01083-18. doi: 10.1128/MRA.01083-18 Van den Heuvel, R. N., Bakker, S. E., Jetten, M. S., and Hefting, M. M. (2011). Decreased N 2 O reduction by low soil pH causes high N 2 O emissions in a riparian ecosystem. Geobiology 9, 294-300. doi: 10.1111/j.1472-4669.2011.00276.x
  119. van Kessel, M. A., Speth, D. R., Albertsen, M., Nielsen, P. H., Op den Camp, H. J., Kartal, B., et al. (2015). Complete nitrification by a single microorganism. Nature 528, 555-559. doi: 10.1038/nature16459
  120. Wang, C., Liu, D., and Bai, E. (2018a). Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 120, 126-133. doi: 10.1016/j.soilbio.2018.02.003
  121. Wang, C., Lu, X., Mori, T., Mao, Q., Zhou, K., Zhou, G., et al. (2018b). Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103-112. doi: 10.1016/j. soilbio.2018.03.009
  122. Wang, L., Qiu, S., Guo, J., and Ge, S. (2021). Light irradiation enables rapid start-up of nitritation through suppressing nxrB gene expression and stimulating ammonia-oxidizing bacteria. Environ. Sci. Technol. 55, 13297-13305. doi: 10.1021/acs.est.1c04174
  123. Wang, J., Shi, X., Zheng, C., Suter, H., and Huang, Z. (2021). Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Sci. Total Environ. 755:142449. doi: 10.1016/j.scitotenv.2020.142449
  124. Wang, M., Zheng, F., Wang, T., Lyu, Y. M., Alteen, M. G., Cai, Z. P., et al. (2019). Characterization of stackebrandtia nassauensis GH 20 beta-hexosaminidase, a versatile biocatalyst for chitobiose degradation. Int. J. Mol. Sci. 20:1243. doi: 10.3390/ ijms20051243
  125. Ward, L. M., Johnston, D. T., and Shih, P. M. (2021). Phanerozoic radiation of ammonia oxidizing bacteria. Sci. Rep. 11:2070. doi: 10.1038/s41598-021-81718-2
  126. Weber, K. A., Achenbach, L. A., and Coates, J. D. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4, 752-764. doi: 10.1038/nrmicro1490
  127. Webster, K. D., Schimmelmann, A., Drobniak, A., Mastalerz, M., Lagarde, L. R., Boston, P. J., et al. (2022). Diversity and composition of methanotroph communities in caves. Microbiol. Spectr. 10, e01566-e01521. doi: 10.1101/412213
  128. Wemheuer, F., Taylor, J. A., Daniel, R., Johnston, E., Meinicke, P., Thomas, T., et al. (2020). Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ. Microbiome 15:11. doi: 10.1186/ s40793-020-00358-7
  129. Wickham, H. (2016). Package 'ggplot2': elegant graphics for data analysis. Springer Verlag New York.
  130. Xu, M., Zhang, Q., Xia, C., Zhong, Y., Sun, G., Guo, J., et al. (2014). Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME J. 8, 1932-1944. doi: 10.1038/ismej.2014.42
  131. Xuan, C., Xiaoran, S., Zhaoji, S., Jiaen, Z., Zhong, Q., Huimin, X., et al. (2021). Analysis of the Spatio-temporal changes in acid rain and their causes in China (1998-2018). J. Res. Ecol. 12, 593-599. doi: 10.5814/j.issn.1674-764x.2021.05.002
  132. Yang, Z., Cheng, X., Wang, H., Zeng, Z., Liu, X., Cao, J., et al. (2021). Environmental driving mechanisms and community assembly process of bacterial communities in the Luohandu cave, Guilin,Guangxi Province, China. Acta Microbiol Sin. 12, 4118-4136. doi: 10.13343/j.cnki.wsxb.20210328
  133. Yao, M., Rui, J., Li, J., Dai, Y., Bai, Y., Heděnec, P., et al. (2014). Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biol. Biochem. 79, 81-90. doi: 10.1016/j.soilbio.2014.09.009
  134. Yu, Z., He, Z., Tao, X., Zhou, J., Yang, Y., Zhao, M., et al. (2016). The shifts of sediment microbial community phylogenetic and functional structures during chromium (VI) reduction. Ecotoxicology 25, 1759-1770. doi: 10.1007/s10646-016-1719-6
  135. Yun, Y., Wang, H., Man, B., Xiang, X., Zhou, J., Qiu, X., et al. (2016a). The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front. Microbiol. 7:1955. doi: 10.3389/fmicb.2016.01955
  136. Yun, Y., Xiang, X., Wang, H., Man, B., Gong, L., Liu, Q., et al. (2016b). Five-year monitoring of bacterial communities in dripping water from the Heshang cave in Central China: implication for paleoclimate reconstruction and ecological functions. Geomicrobiol J. 33, 1-11. doi: 10.1080/01490451.2015.1062062
  137. Zeng, Z., Cheng, X., Wang, H., Cao, J., Yang, Z., Liu, X., et al. (2022). Niche specificity and potential functions of microbial communities in karst caves as exampled by the Panlong Cave in Guilian City, Guangxi province. Earth Sci. 1-24.
  138. Zhang, X., Wei, H., Chen, Q., and Han, X. (2014). The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem. Soil Biol. Biochem. 72, 26-34. doi: 10.1016/j.soilbio.2014.01.034
  139. Zhao, R., Summers, Z. M., Christman, G. D., Yoshimura, K. M., and Biddle, J. F. (2020). Metagenomic views of microbial dynamics influenced by hydrocarbon seepage in sediments of the Gulf of Mexico. Sci. Rep. 10:5772. doi: 10.1038/s41598-020-62840-z Zhao, R., Wang, H., Cheng, X., Yun, Y., and Qiu, X. (2018). Upland soil cluster gamma dominates the methanotroph communities in the karst Heshang cave. FEMS Microbiol. Ecol. 94, 1-13. doi: 10.1093/femsec/fiy192
  140. Zhao, R., Wang, H., Yang, H., Yun, Y., and Barton, H. A. (2016). Ammonia-oxidizing archaea dominate ammonia-oxidizing communities within alkaline cave sediments.
  141. Geomicrobiol J. 34, 511-523. doi: 10.1080/01490451.2016.1225861
  142. Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., and Zhi, X. (2010). Functional molecular ecological networks. MBio 1:e00169-10. doi: 10.1128/mBio.00169-10
  143. Zhou, J., Guan, D., Zhou, B., Zhao, B., Ma, M., Qin, J., et al. (2015). Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in Northeast China. Soil Biol. Biochem. 90, 42-51. doi: 10.1016/j.soilbio.2015.07.005
  144. Zhou, Z., Wang, C., Zheng, M., Jiang, L., and Luo, Y. (2017). Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol. Biochem. 115, 433-441. doi: 10.1016/j.soilbio.2017.09.015
  145. Zhu, J., He, N., Wang, Q., Yuan, G., Wen, D., Yu, G., et al. (2015). The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Sci. Total Environ. 511, 777-785. doi: 10.1016/j.scitotenv.2014.12.038
  146. Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. R 61, 533-616. doi: 10.1128/mmbr.61.4.533-616.1997