Tissue and life-stage distribution of a defensin gene in the Lone Star tick, Amblyomma americanum (original) (raw)

\u3ci\u3eBorrelia lonestari\u3c/i\u3e Infection after a Bite by an \u3ci\u3eAmblyomma americanum\u3c/i\u3e Tick

2001

Erythematous rashes that are suggestive of early Lyme disease have been associated with the bite of Amblyomma americanum ticks, particularly in the southern United States. However, Borrelia burgdorferi, the causative agent of Lyme disease, has not been cultured from skin biopsy specimens from these patients, and diagnostic serum antibodies usually have not been found. Borrelia lonestari sp nov, an uncultured spirochete, has been detected in A. americanum ticks by DNA amplification techniques, but its role in human illness is unknown. We observed erythema migrans in a patient with an attached A. americanum tick. DNA amplification of the flagellin gene flaB produced B. lonestari sequences from the skin of the patient that were identical to those found in the attached tick. B. lonestari is a probable cause of erythema migrans in humans

Defensin from the ornate sheep tick Dermacentor marginatus and its effect on Lyme borreliosis spirochetes

Developmental & Comparative Immunology, 2014

Expression of the previously reported defensin of the tick Dermacentor marginatus (defDM) was analysed in different organs by RT-PCR. mRNA of the defDM gene was detected in the hemolymph, midgut and salivary glands. Moreover defDM was isolated from the tick hemolymph using RP-HPLC and its sequence was determined by mass spectrometry and Edman degradation. Synthetic peptide was used for determining biological activities. The results showed an anti-Gram-positive bacterial role for the defensin. As D. marginatus ticks appear not to be vectors of the Lyme disease agent of the complex Borrelia burgdorferi sensu lato, we tested the influence of defDM on Borrelia afzelii. There is a very clear borrelicidal activity of the defensin, which is concentration dependent and suggests a possible role in the clearing of Borrelia ingested by D. marginatus ticks.

A defensin-like gene expressed in the black-legged tick, Ixodes scapularis

Medical and Veterinary Entomology, 2005

The black-legged tick Ixodes scapularis Linnaeus (Acari: Ixodidae) is an important vector of microbial pathogens. Knowledge of the tick's innate immune response, particularly defensin and other antimicrobial peptides, is important for understanding how microbes survive in this tick. A defensin gene (slnA) from I. scapularis was obtained by reverse transcription-polymerase chain reaction (RT-PCR) using mRNA extracted from tissues of female ticks. RT-PCR indicated the gene was expressed in the midgut, haemocytes, and fat-body, although no evidence of a peptide was found. Sequencing a cloned cDNA fragment revealed a 225 bp open reading frame encoding a 74 amino acid pre-prodefensin, including the putative 38 amino acid mature peptide. Similarity between the defensin amino acid sequences of I. scapularis and Dermacentor variabilis (Say) (Acari: Ixodidae) was 62.2% for the pre-prodefensin region; for the mature defensins from these two species the similarity was 78.9%, with the six cysteine residues being located in the same relative position. PCR amplification and sequencing of chromosomal DNA suggests that slnA, along with vsnA, the defensin gene from D. variabilis, does not contain any introns. This is in contrast to the defensins described for the soft tick, Ornithodoros moubata (sensu Walton) (Acari: Argasidae). The role of defensin in the innate immune response of I. scapularis following microbial invasions is discussed.

Morphodifferentiation of Gené's organ in engorged Amblyomma sculptum Berlese, 1888 female ticks (Acari: Ixodidae)

Ticks and tick-borne diseases, 2018

The Gené's organ (GO) secretes a waxy substance on eggs that reduces water loss and has antimicrobial properties. The current study evaluated morphological and histochemical aspects of GO in Amblyomma sculptum from the period of post-feeding - when ticks detach from the host - to the stage just before oviposition. In this species, GO is composed of a corpus and two pairs of glands, namely, cranial and caudal. Glandular cells are joined laterally by a system of interdigitating membranes with junctional complexes. Histochemistry showed that lipid droplets became more evident as GO developed, while glycogen gradually disappeared, and proteins were detected only near the onset of oviposition. The ultrastructural results revealed a marked distension of the cuticle filled with an amorphous material. Glandular cells showed poor endoplasmatic reticulum, many mitochondria mainly in the basal cell poles and a very developed basal labyrinth. We concluded that the development of GO in A. sc...

The Amblyomma maculatum Koch, 1844 (Acari: Ixodidae: Amblyomminae) tick group: diagnostic characters, description of the larva of A. parvitarsum Neumann, 1901, 16S rDNA sequences, distribution and hosts

Systematic Parasitology, 2005

A review of the largely confused Amblyomma maculatum Koch, 1844 tick group of the subgenus Anastosiella Santos Dias, 1963 (A. neumanni Ribaga, 1902, A. maculatum, A. parvitarsum Neumann, 1901, A. tigrinum Koch, 1844 and A. tristeKoch, 1844) is presented together with a discussion of the diagnostic characters used for the determination of adults, nymphs and, to a lesser extent, larvae. A key for this tick group is produced, including the description of the larva of A. parvitarsum, 1901. Sequences of 16S rDNA are obtained and compared with other Amblyomma spp., including two other species currently in Anastosiella but in the ovaletick group, A. ovale Koch, 1844 and A. aureolatum(Pallas, 1772). According to the morphology and the rDNA sequences, the maculatum group is reduced to A. maculatum (Neotropical-Nearctic), A. tigrinum (Neotropical) and A. triste (Neotropical) A. neumanni and A. parvitarsum are excluded from the subgenus. The distribution is sympatric in northern South America from where A. maculatumreaches the southern Nearctic and the range of A. tigrinum extends to the southern Neotropics. These species have been found on several domestic and wild vertebrates. A. triste and A. tigrinum have been also found on man. Their role as vectors of pathogens deserves further investigation.

An arthropod defensin expressed by the hemocytes of the American dog tick, Dermacentor variabilis (Acari: Ixodidae)

Insect Biochemistry and Molecular Biology, 2003

Both soluble and cell-mediated components are involved in the innate immune response of arthropods. Injection of Borrelia burgdorferi, the Lyme disease agent, results in the secretion of defensin into the hemolymph of the ixodid tick, Dermacentor variabilis. The presence of the peptide is observed as early as 15 min post-challenge and remains present through 18 h postchallenge. As observed in insects and soft ticks, the transcript for defensin is detected as early as 1 h post-challenge in D. variabilis. RT-PCR resulted in an amplicon of 624 bp with a 225 bp region that translates to a 74 amino acid preprodefensin. The defensin encoding region was amplified, cloned and sequenced from the hemocytes. It appears as though defensin is stored in the granulocytes of the hemolymph and secreted into the hemolymph upon bacterial insult. The role of defensin as a contributing factor in determining vector competency is discussed. 

Amblyomma americanum (Acari: Ixodidae) Ticks Are Not Vectors of the Lyme Disease Agent, Borrelia burgdorferi (Spirocheatales: Spirochaetaceae): A Review of the Evidence

Journal of Medical Entomology, 2018

In the early 1980s, Ixodes spp. ticks were implicated as the key North American vectors of Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt and Brenner) (Spirocheatales: Spirochaetaceae), the etiological agent of Lyme disease. Concurrently, other human-biting tick species were investigated as potential B. burgdorferi vectors. Rashes thought to be erythema migrans were observed in patients bitten by Amblyomma americanum (L.) (Acari: Ixodidae) ticks, and spirochetes were visualized in a small percentage of A. americanum using fluorescent antibody staining methods, sparking interest in this species as a candidate vector of B. burgdorferi. Using molecular methods, the spirochetes were subsequently described as Borrelia lonestari sp. nov. (Spirocheatales: Spirochaetaceae), a transovarially transmitted relapsing fever Borrelia of uncertain clinical significance. In total, 54 surveys from more than 35 research groups, involving more than 52,000 ticks, have revealed a low prevalence of B. lonestari, and scarce B. burgdorferi, in A. americanum. In Lyme disease-endemic areas, A. americanum commonly feeds on B. burgdorferi-infected hosts; the extremely low prevalence of B. burgdorferi in this tick results from a saliva barrier to acquiring infection from infected hosts. At least nine transmission experiments involving B. burgdorferi in A. americanum have failed to demonstrate vector competency. Advancements in molecular analysis strongly suggest that initial reports of B. burgdorferi in A. americanum across many states were misidentified B. lonestari, or DNA contamination, yet the early reports continue to be cited without regard to the later clarifying studies. In this article, the surveillance and vector competency studies of B. burgdorferi in A. americanum are reviewed, and we conclude that A. americanum is not a vector of B. burgdorferi.

Identification of a defensin from the hemolymph of the American dog tick, Dermacentor variabilis

Insect Biochemistry and Molecular Biology, 2001

Hemolymph from partially fed virgin Dermacentor variabilis females was collected following Borrelia burgdorferi challenge and assayed for antimicrobial activity against Bacillus subtilis and B. burgdorferi. A small inducible cationic peptide was identified by SDS-PAGE in the hemolymph of these ticks as early as 1h post challenge. Following purification by a three-step procedure involving sequential SepPak elution, reversed phase high performance