Homotopy G-algebra structure on the cochain complex of hom-type algebras (original) (raw)
Abstract
A hom-associative algebra is an algebra whose associativity is twisted by an algebra homomorphism. We show that the Hochschild type cochain complex of a hom-associative algebra carries a homotopy G-algebra structure. As a consequence, we get a Gerstenhaber algebra structure on the cohomology of a hom-associative algebra. We also find similar results for hom-dialgebras.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (12)
- F. Ammar, Z. Ejbehi and A. Makhlouf, Cohomology and Deformations of Hom-algebras, J. Lie Theory 21 (2011), no. 4, 813-836.
- A. Das, Gerstenhaber algebra structure on the cohomology of a hom-associative algebra, arXiv:1805.01207
- A. Frabetti, Dialgebra (co)homology with coefficients, Dialgebras and related operads, 67-103, Lecture Notes in Math., 1763, Springer, Berlin, 2001.
- M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. 78 (1963) 267-288.
- M. Gerstenhaber and A. A. Voronov, Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices 1995, no. 3, 141-153.
- E. Getzler and J. D. S. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, preprint hep-th/9403055
- J. T. Hartwig, D. Larsson and S. D. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2006), 314-361.
- J.-L. Loday, A. Frabetti, F. Chapoton and F. Goichot, Dialgebras, Dialgebras and related operads, 7-66, Lecture Notes in Math., 1763, Springer, Berlin, 2001.
- A. Majumder and G. Mukherjee, Dialgebra cohomology as a G-algebra, Trans. Amer. Math. Soc. 356 (2004), no. 6, 2443-2457.
- A. Makhlouf and S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), no. 2, 51-64.
- A. Makhlouf and S. Silvestrov, Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22 (2010), no. 4, 715-739.
- D. Yau, Gerstenhaber structure and Deligne's conjecture for Loday algebras, J. Pure Appl. Algebra 209 (2007), no. 3, 739-752.