Integrating random forest and synthetic aperture radar improves the estimation and monitoring of woody cover in indigenous forests of South Africa (original) (raw)

Comparison of Capability of SAR and Optical Data in Mapping Forest above Ground Biomass Based on Machine Learning

Environmental Sciences Proceedings

Assessment of forest above ground biomass (AGB) is critical for managing forest and understanding the role of forest as source of carbon fluxes. Recently, satellite remote sensing products offer the chance to map forest biomass and carbon stock. The present study focuses on comparing the potential use of combination of ALOSPALSAR and Sentinel-1 SAR data, with Sentinel-2 optical data to estimate above ground biomass and carbon stock using Genetic-Random forest machine learning (GA-RF) algorithm. Polarimetric decompositions, texture characteristics and backscatter coefficients of ALOSPALSAR and Sentinel-1, and vegetation indices, tasseled cap, texture parameters and principal component analysis (PCA) of Sentinel-2 based on measured AGB samples were used to estimate biomass. The overall coefficient (R2) of AGB modelling using combination of ALOSPALSAR and Sentinel-1 data, and Sentinel-2 data were respectively 0.70 and 0.62. The result showed that Combining ALOSPALSAR and Sentinel-1 dat...

Assessing the performance of random forest regression for estimating canopy height in tropical dry forests

International Journal of Electrical and Computer Engineering (IJECE), 2023

Accurate estimation of forest canopy height is essential for monitoring forest ecosystems and assessing their carbon storage potential. This study evaluates the effectiveness of different remote sensing techniques for estimating forest canopy height in tropical dry forests. Using field data and remote sensing data from airborne lidar and polarimetric synthetic aperture radar (SAR), a random forest (RF) model was developed to estimate canopy height based on different indices. Results show that the normalize difference build-up index (NDBI) has the highest correlation with canopy height, outperforming other indices such as relative vigor index (RVI) and polarimetric vertical and horizontal variables. The RF model with NDBI as input showed a good fit and predictive ability, with low concentration of errors around 0. These findings suggest that NDBI can be a useful tool for accurately estimating forest canopy height in tropical dry forests using remote sensing techniques, providing valuable information for forest management and conservation efforts.

Modeling Forest Canopy Cover: A Synergistic Use of Sentinel-2, Aerial Photogrammetry Data, and Machine Learning

Remote Sensing, 2022

Forest canopy cover (FCC) is an important ecological parameter of forest ecosystems, and is correlated with forest characteristics, including plant growth, regeneration, biodiversity, light regimes, and hydrological properties. Here, we present an approach of combining Sentinel-2 data, high-resolution aerial images, and machine learning (ML) algorithms to model FCC in the Hyrcanian mixed temperate forest, Northern Iran. Sentinel-2 multispectral bands and vegetation indices were used as variables for modeling and mapping FCC based on UAV ground truth to a wider spatial extent. Random forest (RF), support-vector machine (SVM), elastic net (ENET), and extreme gradient boosting (XGBoost) were the ML algorithms used to learn and generalize on the remotely sensed variables. Evaluation of variable importance indicated that vegetation indices including NDVI, NDVI-A, NDRE, and NDI45 were the dominant predictors in most of the models. Model accuracy estimation results showed that among the te...

Woody savannah tree structural assessment in the greater Kruger National Park region, South Africa, using multi-seasonal polarimetric synthetic aperture radar (SAR) and optical data product approaches

2012

With a mean net primary productivity of 7.2 tC/ha/year and a minimum woody coverage ranging from 10 to 30%, savannahs account for approximately 40% of the global carbon store. The savannah woody component impacts the fire regime, biomass production, nutrient cycling, soil erosion, the water cycle and the anthropogenic services (e.g. fuelwood provision) vital for the rural populace. The structural parameters which make up this vital woody component can be directly measured using active remote sensing sensors such as LiDAR and SAR due to their responsiveness to vegetative structure and high canopy penetration ability. The aim of this work is to model regional scale woody tree structural attributes [specifically woody canopy volume (CVOL), woody volume (TWV) and woody cover (TOT COV)] for the management of South African savannas. This goal was achieved by testing multiple dataset scenarios consisting of multi-seasonal and fully polarized RADARSAT-2 Cband satellite SAR data, airborne LiDAR derived tree structural metrics and Rapid Eye optical products in an integrated modelling approach. According to results, SAR data acquired in the middle of the dry season generated the best models in comparison to other seasons but ideally a dataset spanning all seasons were preferable to obtain the best modelled results (

Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran

The main objective of this research is to investigate the potential combination of Sentinel-2A and ALOS-2 PALSAR-2 (Advanced Land Observing Satellite-2 Phased Array type L-band Synthetic Aperture Radar-2) imagery for improving the accuracy of the Aboveground Biomass (AGB) measurement. According to the current literature, this kind of investigation has rarely been conducted. The Hyrcanian forest area (Iran) is selected as the case study. For this purpose, a total of 149 sample plots for the study area were documented through fieldwork. Using the imagery, three datasets were generated including the Sentinel-2A dataset, the ALOS-2 PALSAR-2 dataset, and the combination of the Sentinel-2A dataset and the ALOS-2 PALSAR-2 dataset (Sentinel-ALOS). Because the accuracy of the AGB estimation is dependent on the method used, in this research, four machine learning techniques were selected and compared, namely Random Forests (RF), Support Vector Regression (SVR), Multi-Layer Perceptron Neural N...

Predicting Forest Cover in Distinct Ecosystems: The Potential of Multi-Source Sentinel-1 and -2 Data Fusion

Remote Sensing

The fusion of microwave and optical data sets is expected to provide great potential for the derivation of forest cover around the globe. As Sentinel-1 and Sentinel-2 are now both operating in twin mode, they can provide an unprecedented data source to build dense spatial and temporal high-resolution time series across a variety of wavelengths. This study investigates (i) the ability of the individual sensors and (ii) their joint potential to delineate forest cover for study sites in two highly varied landscapes located in Germany (temperate dense mixed forests) and South Africa (open savanna woody vegetation and forest plantations). We used multi-temporal Sentinel-1 and single time steps of Sentinel-2 data in combination to derive accurate forest/non-forest (FNF) information via machine-learning classifiers. The forest classification accuracies were 90.9% and 93.2% for South Africa and Thuringia, respectively, estimated while using autocorrelation corrected spatial cross-validation...

Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery

International Journal of Applied Earth Observation and Geoinformation

Spatially-explicit information on forest structure is paramount to estimating aboveground carbon stocks for designing sustainable forest management strategies and mitigating greenhouse gas emissions from deforestation and forest degradation. LiDAR measurements provide samples of forest structure that must be integrated with satellite imagery to predict and to map landscape scale variations of forest structure. Here we evaluate the capability of existing satellite synthetic aperture radar (SAR) with multispectral data to estimate forest canopy height over five study sites across two biomes in North America, namely temperate broadleaf and mixed forests and temperate coniferous forests. Pixel size affected the modelling results, with an improvement in model performance as pixel resolution coarsened from 25 m to 100 m. Likewise, the sample size was an important factor in the uncertainty of height prediction using the Support Vector Machine modelling approach. Larger sample size yielded better results but the improvement stabilised when the sample size reached approximately 10% of the study area. We also evaluated the impact of surface moisture (soil and vegetation moisture) on the modelling approach. Whereas the impact of surface moisture had a moderate effect on the proportion of the variance explained by the model (up to 14%), its impact was more evident in the bias of the models with bias reaching values up to 4 m. Averaging the incidence angle corrected radar backscatter coefficient (γ°) reduced the impact of surface moisture on the models and improved their performance at all study sites, with R 2 ranging between 0.61 and 0.82, RMSE between 2.02 and 5.64 and bias between 0.02 and −0.06, respectively, at 100 m spatial resolution. An evaluation of the relative importance of the variables in the model performance showed that for the study sites located within the temperate broadleaf and mixed forests biome ALOS-PALSAR HV polarised backscatter was the most important variable, with Landsat Tasselled Cap Transformation components barely contributing to the models for two of the study sites whereas it had a significant contribution at the third one. Over the temperate conifer forests, Landsat Tasselled Cap variables contributed more than the ALOS-PALSAR HV band to predict the landscape height variability. In all cases, incorporation of multispectral data improved the retrieval of forest canopy height and reduced the estimation uncertainty for tall forests. Finally, we concluded that models trained at one study site had higher uncertainty when applied to other sites, but a model developed from multiple sites performed equally to site-specific models to predict forest canopy height. This result suggest that a biome level model developed from several study sites can be used as a reliable estimator of biome-level forest structure from existing satellite imagery.

Aboveground Forest Biomass Estimation by the Integration of TLS and ALOS PALSAR Data Using Machine Learning

Remote Sensing

Forest inventory parameters play an important role in understanding various biophysical processes of forest ecosystems. The present study aims at integrating Terrestrial Laser Scanner (TLS) and ALOS PALSAR L-band Synthetic Aperture Radar (SAR) data to assess Aboveground Biomass (AGB) in the Barkot Forest Range, Uttarakhand, India. The integration was performed to overcome the AGB saturation issue in ALOS PALSAR L-band SAR data for the high biomass density forest of the study area using 13 plots. Various parameters, namely, Gray-Level Co-Occurrence Matrix (GLCM) texture measures, Yamaguchi decomposition components, polarimetric parameters, and backscatter values of HH and HV band intensity, were derived from the ALOS SAR data. However, TLS was used to obtain the diameter at breast height (dbh) and tree height for the sample plots. A total of 23 parameters was retrieved using TLS and SAR data for integration with the LiDAR footprint. The integration was performed using Random Forest (...

Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm

ISPRS Journal of Photogrammetry and Remote Sensing, 2015

Many forest management activities, including the development of forest inventories, require spatially detailed forest canopy cover and height data. Among the various remote sensing technologies, LiDAR (Light Detection and Ranging) offers the most accurate and consistent means for obtaining reliable canopy structure measurements. A potential solution to reduce the cost of LiDAR data, is to integrate transects (samples) of LiDAR data with frequently acquired and spatially comprehensive optical remotely sensed data. Although multiple regression is commonly used for such modeling, often it does not fully capture the complex relationships between forest structure variables. This study investigates the potential of Random Forest (RF), a machine learning technique, to estimate LiDAR measured canopy structure using a time series of Landsat imagery. The study is implemented over a 2600 ha area of industrially managed coastal temperate forests on Vancouver Island, British Columbia, Canada. We implemented a trajectory-based approach to time series analysis that generates time since disturbance (TSD) and disturbance intensity information for each pixel and we used this information to stratify the forest land base into two strata: mature forests and young forests. Canopy cover and height for three forest classes (i.e. mature, young and mature and young (combined)) were modeled separately using multiple regression and Random Forest (RF) techniques. For all forest classes, the RF models provided improved estimates relative to the multiple regression models. The lowest validation error was obtained for the mature forest strata in a RF model (R 2 = 0.88, RMSE = 2.39 m and bias = À0.16 for canopy height; R 2 = 0.72, RMSE = 0.068% and bias = À0.0049 for canopy cover). This study demonstrates the value of using disturbance and successional history to inform estimates of canopy structure and obtain improved estimates of forest canopy cover and height using the RF algorithm.