Crystallization and thermal stability of polypropylene/multi-wall carbon nanotube nanocomposites (original) (raw)

Polypropylene (PP)/multi-wall carbon nanotube (MWCNT) nanocomposites were prepared via a melt compounding method using a twin-screw extruder. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to study the crystallization and thermal stability of the nanocomposites. The DSC analysis results revealed that the existence of MWCNTs in a PP matrix, which acted as a nucleating agent enhancing the crystallization process of PP matrix. This behaviour was manifested by an increase in the crystallization temperature and crystallinity index of the nanocomposites. Additionally, the TGA results showed that the addition of MWCNTs dramatically increased the thermal stability of the PP/MWCNT nanocomposites. Generally, MWCNT type C-70P showed improved crystallization and better thermal stability of the nanocomposites compared to type C-150P.