EquiNox2: A new method to measure NADPH oxidase activity and to study effect of inhibitors and their interactions with the enzyme (original) (raw)

NDS27 combines the effect of curcumin lysinate and hydroxypropyl-β-cyclodextrin to inhibit equine PKCδ and NADPH oxidase involved in the oxidative burst of neutrophils

FEBS open bio, 2014

Polymorphonuclear neutrophils (PMNs) are involved in host defence against infections by the production of reactive oxygen species (ROS), but excessive PMN stimulation is associated with the development of inflammatory diseases. After appropriate stimuli, protein kinase C (PKC) triggers the assembly of NADPH oxidase (Nox2) which produces superoxide anion (O2 (•) (-)), from which ROS derive. The therapeutic use of polyphenols is proposed to lower ROS production by limiting Nox2 and PKC activities. The purpose of this study was to compare the antioxidant effect of NDS27 and NDS28, two water-soluble forms of curcumin lysinate respectively complexed with hydroxypropyl-β-cyclodextrin (HPβCD) and γ-cyclodextrin (γ-CD), on the activity of Nox2 and PKCδ, involved in the Nox2 activation pathway. Our results, showed that NDS27 is the best inhibitor for Nox2 and PKCδ. This was illustrated by the combined effect of HPβCD and curcumin lysinate: HPβCD, but not γ-CD, improved the release of curcumi...

Classical Inhibitors of NOX NAD(P)H Oxidases Are Not Specific

Current Drug Metabolism, 2008

NAD(P)H oxidases (NOXs) are a family of enzymes catalyzing the univalent reduction of oxygen to produce the superoxide anion radical, which in turn can be converted in other reactive oxygen species (ROS) and may participate to the formation of reactive nitrogen derivatives, such as peroxynitrite. By virtue of their activity, NOXs may represent a double-edged sword for the organism's homeostasis. On one hand ROS participate in host defence by killing invading microbes and may regulate several important physiological functions, such as cell signalling, regulation of cell growth and differentiation, oxygen sensing, angiogenesis, fertilization and control of vascular tone. On the other hand ROS may play an important role in pathological processes such as hypertension, atherosclerosis, diabetes, cancer, ischemia/reperfusion injury, neurodegenerative diseases. Many roles suggested for NOXs in various tissues and physiopathological situations have been inferred by the in vitro and in vivo effects of several NOX inhibitors. In particular, most studies are based on the use of two compounds, diphenyleneiodonium and apocynin. Aim of this review is to describe the main features of these two compounds, to show that they cannot be used as specific NOX inhibitors and to solicit researchers to find other tools for investigating the role of NOXs.

On the Pharmacology of Oxidative Burst of Human Neutrophils

Physiological Research, 2015

The effect of three therapeutically used drugs and five polyphenolic compounds on the mechanism of oxidative burst was compared in whole blood and isolated neutrophils at cellular and molecular level. In 10 μM concentration, the compounds investigated decreased the oxidative burst of whole blood in the rank order of potency: N-feruloylserotonin (N-f-5HT) > curcumin (CUR) > quercetin (QUER) > arbutin (ARB) > resveratrol (RES) > dithiaden (DIT) > carvedilol (CARV) > brompheniramine (BPA). The ratio between the percentage inhibition of extracellular versus intracellular chemiluminescence (CL) followed the rank order QUER > N-f-5HT > RES > CUR > DIT and is indicative of the positive effect of the compounds tested against oxidative burst of neutrophils, demonstrating suppression of reactive oxygen species extracellularly with minimal alteration of intracellular reactive oxygen species (ROS). Activation of protein kinase C was significantly decreased by DIT, CUR, QUER and N-f-5HT. CARV, DIT, QUER and ARB reduced activated neutrophil myeloperoxidase release more significantly compared with the effect on superoxide anion generation. All compounds tested increased the activity of caspase-3 in cell-free system. It is suggested that other regulatory mechanisms than protein kinase C might participate in the inhibition of neutrophil activation with the compounds tested. Different mechanisms are concerned in controlling the assembly of NADPH oxidase and the regulatory role of calcium ions is suggested. Compounds decreasing the amount of extracellular ROS generation, yet affecting but minimally intracellular ROS generation, are promising for further investigation in vivo.

Curcumin and resveratrol act by different ways on NADPH oxidase activity and reactive oxygen species produced by equine neutrophils

Chemico-Biological Interactions, 2013

In neutrophils (PMNs), superoxide anion (O 2 ÅÀ), the first reactive oxygen species (ROS) produced to kill pathogenic agents, is generated by NADPH oxidase, an enzymatic complex formed by the translocation of cytosolic subunits to the membrane flavocytochrome b 558. In horses, excessive activation of PMNs is often associated with deadly pathologies and the modulation of their ROS production by acting on NADPH oxidase is a prime target to manage inflammation. We developed a cell-free assay to measure the activity of equine NADPH oxidase assembled in vitro, in order to test the effects of natural or synthetic compounds on the enzyme activity or assembly. The cell-free assay was validated with diphenyleneiodonium chloride and Gp91ds-tat, two inhibitors largely described for human NADPH oxidase. The anti-oxidant effects of curcumin and resveratrol at final concentration ranging from 10 À4 to 10 À6 M were studied on whole cells by chemiluminescence (CL) and by cell-free assay, in which the molecule was added before or after the enzyme assembly. The CL assay demonstrated that curcumin efficiently inhibited the O 2 ÅÀ production and easily entered into PMNs or interacted with their membrane. Cell-free assay showed that curcumin acted on the reconstitution of NADPH oxidase even at 10 À5 M, while resveratrol appeared to be an O 2 ÅÀ scavenger rather than an inhibitor of NADPH oxidase activity, since it acted from outside the cell in CL and after the complex assembly in cell-free assay. By acting directly on NADPH oxidase, curcumin should be a good candidate for the treatment of acute or inflammatory diseases involving an excessive ROS production.

Activation of human neutrophil NADPH oxidase results in coupling of electron carrier function between ubiquinone-10 and cytochrome b559

Journal of Biological Chemistry

The enzymatic activity underlying the respiratory burst in human neutrophils was examined in a subcellular fraction with high specific activity and shown to be a membrane-associated complex of a flavoprotein, ubiquinone-10, and cytochrome baas in an approximate 1.3:1:2 molar ratio. Study of the redox poise of these electron carriers indicated that electron flow in the intact complex from unstimulated cells proceeded: NADPH + E-FAD -P ubiquinone-10. Similar studies on the complex prepared from stimulated neutrophils indicated that electron flow proceeded NADPH + E-FAD + ubiquinone-10 + cytochrome bass + oxygen. The active enzyme complex was inhibited by p-chloromercuribenzoate. Inhibition persisted after removal of excess inhibitor, was reversed by dithiothreitol, and could be blocked by prior addition of substrate (NADPH). Inhibition of the active oxidase complex by p-chloromercuribenzoate also inhibited electron flow from NADPH to all purported electron carriers in the chain (Le. E-FAD, ubiquinone-10, and cytochrome bass). We conclude that activation of the oxidase enzyme complex in the intact neutrophil resulted in linkage of electron carrier function between endogenous ubiquinone-10 and cytochrome bass and was without demonstrable effect on proximal electron flow. The pchloromercuribenzoate sensitive site(s) proximal to the initial electron acceptor (E-FAD) did not appear to be altered by the cellular activation process.

Regulation of the Nitric Oxide Oxidase Activity of Myeloperoxidase by Pharmacological Agents

Biochemical pharmacology, 2017

The leukocyte-derived heme enzyme myeloperoxidase (MPO) is released extracellularly during inflammation and impairs nitric oxide (NO) bioavailability by directly oxidizing NO or producing NO-consuming substrate radicals. Here, structurally diverse pharmacological agents with activities as MPO substrates/inhibitors or antioxidants were screened for their effects on MPO NO oxidase activity in human plasma and physiological model systems containing endogenous MPO substrates/antioxidants (tyrosine, urate, ascorbate). Hydrazide-based irreversible/reversible MPO inhibitors (4-ABAH, isoniazid) or the sickle cell anemia drug, hydroxyurea, all promoted MPO NO oxidase activity. This involved the capacity of NO to antagonize MPO inhibition by hydrazide-derived radicals and/or the ability of drug-derived radicals to stimulate MPO turnover thereby increasing NO consumption by MPO redox intermediates or NO-consuming radicals. In contrast, the mechanism-based irreversible MPO inhibitor 2-thioxanth...

Therapeutic potential of NADPH oxidase 1/4 inhibitors

British Journal of Pharmacology, 2016

The NADPH oxidase (NOX) family of enzymes produces ROS as their sole function and is becoming recognized as key modulators of signal transduction pathways with a physiological role under acute stress and a pathological role after excessive activation under chronic stress. The seven isoforms differ in their regulation, tissue and subcellular localization and ROS products. The most studied are NOX1, 2 and 4. Genetic deletion of NOX1 and 4, in contrast to NOX2, has revealed no significant spontaneous pathologies and a pathogenic relevance of both NOX1 and 4 across multiple organs in a wide range of diseases and in particular inflammatory and fibrotic diseases. This has stimulated interest in NOX inhibitors for therapeutic application. GKT136901 and GKT137831 are two structurally related compounds demonstrating a preferential inhibition of NOX1 and 4 that have suitable properties for in vivo studies and have consequently been evaluated across a range of disease models and compared with ...

A Specific Method for Measurement of Equine Active Myeloperoxidase in Biological Samples and in in Vitro Tests

Journal of Veterinary Diagnostic Investigation, 2006

An original method called SIEFED (specific immunological extraction followed by enzymatic detection) was developed for the specific detection of the activity of equine myeloperoxidase (MPO). The method consists of the extraction of MPO from aqueous solutions by immobilized anti-MPO antibodies followed by washing (to eliminate proteins and interfering molecules) and measurement of MPO activity using a detection system containing a fluorogenic substrate, hydrogen peroxide, and nitrite as reaction enhancer. The SIEFED technique was applied to study active MPO in horse biological fluids and the effects of 2 polyphenolic molecules, curcumin and resveratrol, on MPO activity. The detection limit of the SIEFED was 0.23 mU/ml. The SIEFED exhibited good precision with intra-assay and interassay coefficients of variation below 10% and 20%, respectively, for MPO activities ranging from 0.25 to 6.4 mU/ml. The activity of MPO was generally higher than 1 mU/ml in the fluids collected from horses with inflammatory diseases. Curcumin and resveratrol exerted a dose-dependent inhibition on MPO activity and, as they were removed before the enzymatic detection of MPO, the results suggest a direct drug-enzyme interaction or an enzyme structure modification by the drug. The SIEFED is a new tool that would be useful for specific detection of active MPO in complex media and for selection of MPO activity modulators.