Affine Weyl groups in K-theory and representation theory (original) (raw)

Alcove path and Nichols-Woronowicz model of the equivariant K-theory of generalized flag varieties

C. Lenart

International Mathematics Research Notices, 2006

View PDFchevron_right

Combinatorics of the K-theory of affine Grassmannians

Jennifer Morse

Advances in Mathematics, 2012

View PDFchevron_right

A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory

Cristian Lenart

arXiv: Combinatorics, 2020

View PDFchevron_right

Weyl Character Formula in KK-Theory

Jonathan Block

Noncommutative Geometry and Physics 3, 2012

View PDFchevron_right

A Chevalley formula for semi-infinite flag manifolds and quantum K-theory (Extended abstract)

Cristian Lenart

arXiv: Combinatorics, 2019

View PDFchevron_right

A ttt-generalization for Schubert Representatives of the Affine Grassmannian

Jennifer Morse

Discrete Mathematics & Theoretical Computer Science, 2013

View PDFchevron_right

A Pieri–Chevalley Formula for K(G/B) and Standard Monomial Theory

Peter Littelmann

View PDFchevron_right

A New Combinatorial Model in Representation Theory

Cristian Lenart

View PDFchevron_right

A Combinatorially Explicit Relative Möbius Function on Affine Grassmannian Elements and a Proposal for an Affine Infinite Symmetric Group

Ruben Lugo

2019

View PDFchevron_right

Schubert polynomials and Bott-Samelson varieties

Peter Magyar

Commentarii Mathematici Helvetici, 1998

View PDFchevron_right

Flag Gromov-Witten invariants via crystals

Jennifer Morse

Discrete Mathematics & Theoretical Computer Science, 2014

View PDFchevron_right

A dual approach to structure constants for K-theory of Grassmannians

Jennifer Morse

Discrete Mathematics & Theoretical Computer Science

View PDFchevron_right

Equivariant homology and K-theory of affine Grassmannians and Toda lattices

Ivan Mirkovic

Compositio Mathematica, 2005

View PDFchevron_right

Generating series for the EEE-polynomials of GL(n,mathbbC)GL(n,{\mathbb C})GL(n,mathbbC)-character varieties

Carlos Florentino

2019

View PDFchevron_right

On Weyl modules for the symplectic group

Antonio Pasini

View PDFchevron_right

Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type

Cristian Lenart

Forum of Mathematics, Sigma, 2021

View PDFchevron_right

Generating series for the Hodge-Euler polynomials of GL(n,mathbbC)GL(n,{\mathbb C})GL(n,mathbbC)-character varieties

Carlos Florentino

arXiv: Algebraic Geometry, 2019

View PDFchevron_right

Symmetric functions, conjugacy classes and the flag variety

Claudio Procesi

Inventiones Mathematicae, 1981

View PDFchevron_right

A Pieri-type formula for the K-theory of a flag manifold

Cristian Lenart

arXiv (Cornell University), 2004

View PDFchevron_right

The K-theory of the flag variety and the Fomin–Kirillov quadratic algebra

Cristian Lenart

Journal of Algebra, 2005

View PDFchevron_right

Quiver Grassmannians and degenerate flag varieties

Giovanni Irelli

Algebra & Number Theory, 2012

View PDFchevron_right

Linear degenerations of flag varieties: partial flags, defining equations, and group actions

Giovanni Irelli

Mathematische Zeitschrift, 2019

View PDFchevron_right

Kazhdan-Laumon representations of finite Chevalley groups, character sheaves and some generalization of the Lefschetz-Verdeier trace formula

Alexander Polishchuk

1998

View PDFchevron_right

Equivariant K-Chevalley rules for Kac-Moody flag manifolds

Cristian Lenart

American Journal of Mathematics, 2014

View PDFchevron_right

A K-theory version of Monk's formula and some related multiplication formulas

Cristian Lenart

Journal of Pure and Applied Algebra, 2003

View PDFchevron_right

Equivariant Cohomology, Schubert Calculus, and Edge Labeled Tableaux

Harshit Yadav

Facets of Algebraic Geometry, 2022

View PDFchevron_right

Degenerate flag varieties and Schubert varieties: a characteristic free approach

Giovanni Irelli, Peter Littelmann

2015

View PDFchevron_right

Quantum and affine Schubert calculus and Macdonald polynomials

Jennifer Morse

Advances in Mathematics, 2017

View PDFchevron_right

A Unified Approach to Combinatorial Formulas for Schubert Polynomials

Cristian Lenart

Journal of Algebraic Combinatorics, 2004

View PDFchevron_right