Double-Stranded RNA Uptake through Topical Application, Mediates Silencing of Five CYP4 Genes and Suppresses Insecticide Resistance in Diaphorina citri (original) (raw)

Chemically modified dsRNA induces RNAi effects in insects in vitro and in vivo: A potential new tool for improving RNA-based plant protection

bioRxiv, 2022

Global agriculture loses over $100 billion of produce annually to crop pests such as insects. Many of these crop pests either have no current means of control or have developed resistance against chemical pesticides. Long dsRNAs are capable of inducing RNA interference (RNAi) in insects and are emerging as novel highly selective alternatives for sustainable insect management strategies. However, there are significant challenges associated with RNAi efficacy in insects. In this study, we synthesised a range of chemically modified long dsRNA in an approach to improve nuclease resistance and RNAi efficacy in insects. The results showed that dsRNA containing phosphorothioate modifications demonstrated increased resistance to southern green stink bug saliva nucleases. Phosphorothioate and 2’-fluoro modified dsRNA also demonstrated increased resistance to degradation by soil nucleases and increased RNAi efficacy in Drosophila melanogaster cell cultures. In live insects, chemically modifie...

Delivery of dsRNA through topical feeding for RNA interference in the citrus sap piercing‐sucking hemipteran, Diaphorina citri

Archives of Insect Biochemistry and Physiology, 2017

RNA interference (RNAi) is a powerful means to study functional genomics in insects. The delivery of dsRNA is a challenging step in the development of RNAi assay. Here, we describe a new delivery method to increase the effectiveness of RNAi in the Asian citrus psyllid Diaphorina citri. Bromophenol blue droplets were topically applied to fifth instar nymphs and adults on the ventral side of the thorax between the three pairs of legs. In addition to video recordings that showed sucking of the bromophenol blue by the stylets, dissected guts turned blue indicating that the uptake was through feeding. Thus, we called the method topical feeding. We targeted the abnormal wing disc gene (awd), also called nucleoside diphosphate kinase (NDPK), as a reporter gene to prove the uptake of dsRNA via this method of delivery. Our results showed that dsRNA-awd caused reduction of awd expression and nymph mortality. Survival and lifespan of adults emerged from treated nymphs and treated adults were affected. Silencing awd caused wing malformation in the adults emerged from treated nymphs. Topical feeding as a delivery of dsRNA is highly efficient for both nymphs and adults. The described method could be used to increase the efficiency of RNAi in D. citri and other sap piercing-sucking hemipterans. K E Y W O R D S abnormal wing disc, Diaphorina citri, dsRNA delivery, nucleoside diphosphate kinase, RNA interference 1 INTRODUCTION RNA interference (RNAi) is a reliable molecular method used to study the functional genomics in eukaryotes including insects (Huvenne & Smagghe, 2010; Scharf, Zhou, & Schwinghammer, 2008). It is a primary method for manipulating gene expression (Whitten et al., 2016). Because of its high specificity, RNAi has been assessed as a novel strategy for insect control compared to traditional insecticide applications (Zhang et al., 2013). Anti-sense RNA strand

dsRNA Uptake in Plant Pests and Pathogens: Insights into RNAi-Based Insect and Fungal Control Technology

Plants

Efforts to develop more environmentally friendly alternatives to traditional broad-spectrum pesticides in agriculture have recently turned to RNA interference (RNAi) technology. With the built-in, sequence-specific knockdown of gene targets following delivery of double-stranded RNA (dsRNA), RNAi offers the promise of controlling pests and pathogens without adversely affecting non-target species. Significant advances in the efficacy of this technology have been observed in a wide range of species, including many insect pests and fungal pathogens. Two different dsRNA application methods are being developed. First, host induced gene silencing (HIGS) harnesses dsRNA production through the thoughtful and precise engineering of transgenic plants and second, spray induced gene silencing (SIGS) that uses surface applications of a topically applied dsRNA molecule. Regardless of the dsRNA delivery method, one aspect that is critical to the success of RNAi is the ability of the target organism...

RNAi in Insects: A Revolution in Fundamental Research and Pest Control Applications

Insects

In this editorial for the Special Issue on ‘RNAi in insect pest control’, three important applications of RNA interference (RNAi) in insects are briefly discussed and linked to the different studies published in this Special Issue. The discovery of the RNAi mechanism revolutionized entomological research, as it presented researchers with a tool to knock down genes, which is easily applicable in a wide range of insect species. Furthermore, RNAi also provides crop protection with a novel and promising pest control mode-of-action. The sequence-dependent nature allows RNAi-based control strategies to be highly species selective and the active molecule, a natural biological molecule known as double-stranded RNA (dsRNA), has a short environmental persistence. However, more research is needed to investigate different cellular and physiological barriers, such as cellular uptake and dsRNA degradation in the digestive system in insects, in order to provide efficient control methods against a ...

Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo

Insect biochemistry and molecular biology, 2016

RNA interference (RNAi) has become an essential technique in entomology research. However, RNAi efficiency appears to vary significantly among insect species. Here, the sensitivity of four insect species from different orders to RNAi was compared to understand the reason for this variation. A previously reported method was modified to monitor trace amounts of double-stranded RNA (dsRNA). After the administration of dsRNA, the dynamics of its content was determined in the hemolymph, in addition to the capability of its degradation in both the hemolymph and the midgut juice. The results showed that injection of dsRNA targeting the homologous chitinase gene in Periplaneta americana, Zophobas atratus, Locusta migratoria, and Spodoptera litura, with doses (1.0, 2.3, 11.5, and 33.0 μg, respectively) resulting in the same initial hemolymph concentration, caused 82%, 78%, 76%, and 20% depletion, respectively, whereas feeding doses based on body weight (24, 24, 36, and 30 μg) accounted for 4...

Delivery of dsRNA for RNAi in insects: an overview and future directions

Insect Science, 2013

RNA interference (RNAi) refers to the process of exogenous double-stranded RNA (dsRNA) silencing the complementary endogenous messenger RNA. RNAi has been widely used in entomological research for functional genomics in a variety of insects and its potential for RNAi-based pest control has been increasingly emphasized mainly because of its high specificity. This review focuses on the approaches of introducing dsRNA into insect cells or insect bodies to induce effective RNAi. The three most common delivery methods, namely, microinjection, ingestion, and soaking, are illustrated in details and their advantages and limitations are summarized for purpose of feasible RNAi research. In this review, we also briefly introduce the two possible dsRNA uptake machineries, other dsRNA delivery methods and the history of RNAi in entomology. Factors that influence the specificity and efficiency of RNAi such as transfection reagents, selection of dsRNA region, length, and stability of dsRNA in RNAi research are discussed for further studies.

RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far

Frontiers in Physiology

In recent years, the research on the potential of using RNA interference (RNAi) to suppress crop pests has made an outstanding growth. However, given the variability of RNAi efficiency that is observed in many insects, the development of novel approaches toward insect pest management using RNAi requires first to unravel factors behind the efficiency of dsRNA-mediated gene silencing. In this review, we explore essential implications and possibilities to increase RNAi efficiency by delivery of dsRNA through non-transformative methods. We discuss factors influencing the RNAi mechanism in insects and systemic properties of dsRNA. Finally, novel strategies to deliver dsRNA are discussed, including delivery by symbionts, plant viruses, trunk injections, root soaking, and transplastomic plants.