Characterization and quantification of clonal heterogeneity among hematopoietic stem cells: a model-based approach (original) (raw)

2008, Blood

Hematopoietic stem cells (HSCs) show pronounced heterogeneity in self-renewal and differentiation behavior, which is reflected in their repopulation kinetics. Here, a single-cell–based mathematical model of HSC organization is used to examine the basis of HSC heterogeneity. Our modeling results, which are based on the analysis of limiting dilution competitive repopulation experiments in mice, demonstrate that small quantitative but clonally fixed differences of cellular properties are necessary and sufficient to account for the observed functional heterogeneity. The model predicts, and experimental data validate, that competitive pressures will amplify small clonal differences into large changes in the number of differentiated progeny. We further predict that the repertoire of HSC clones will evolve over time. Last, our results suggest that larger differences in cellular properties have to be assumed to account for genetically determined differences in HSC behavior as observed in di...

Single-cell reconstitution reveals persistence of clonal heterogeneity in the murine hematopoietic system

2021

ABSTRACTThe persistence of patterns of monoallelic expression is a controversial matter. We report a genome-wide in vivo transcriptomics approach based on allelic expression imbalance to evaluate whether the transcriptional allelic patterns of single murine hematopoietic stem cells (HSC) are still present in the respective differentiated clonal B-cell populations. For 14 genes, we show conclusive evidence for a remarkable persistence in HSC-derived B clonal cells of allele-specific autosomal transcriptional states already present in HSCs. In a striking contrast to the frequency of genes with clonal allelic expression differences in clones expanded without differentiation (up to 10%), we find that clones that have undergone multiple differentiation steps in vivo are more similar to each other. These data suggest that most of the random allele-specific stable transcriptional states on autosomal chromosomes are established de novo during cell lineage differentiation. Given that allele-...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.