Time-based capabilities of occupants to escape fires in public buildings (original) (raw)
Related papers
Way finding during fire evacuation; an analysis of unannounced fire drills in a hotel at night
Building and Environment, 2010
Findings in earlier studies on fire evacuation and way finding suggest that building features have influence on evacuation behaviour. For example, way finding is believed to be strongly dependent on the lay-out of the building and seems to be hardly dependent on (escape) route signs. Though some aspects are investigated, it is not discussed at great length. In particular there is little insight in how persons find their escape route, and how this process can be supported with lay-out and design measures has been hardly examined. Thus, there is need for insight in the decision-making processes which evacuees pass through. In this paper are the results presented of 83 evacuation experiments in a hotel building at night. The main focus of the study is on way finding during fire evacuation. In the evacuation experiments we investigated the possible influence of smoke and low placed exit signs on the human fire response performance. The experiments are carried out with a traditional research method, namely the registration and evaluation of unannounced fire drills. The study is conducted as part of the validation of a new research method that makes use of serious gaming. The results of the study suggest that smoke has influence on the route choice: when no smoke is perceptible the majority of the participants escape via the main exit and when smoke blocks the route towards the main exit, the majority of the participants escape via the fire exit. Furthermore, low placed exit signs appear to have a positive influence on the use of the nearest fire exit. The personal feature of prior knowledge of the surroundings (or type of surroundings) is also found to have a positive influence on the use of the nearest fire exit. Self-assessments and interviews after a fire evacuation are found to be a disputable method for research on human behaviour in fire. A real-time observation of the people's behaviour during evacuation is considered to give more reliable results.
Human behaviour under fire situations in high-rise residential building
International Journal of Building Pathology and Adaptation, 2017
Purpose The purpose of this paper is to investigate human behaviour under a situation of fire in high-rise residential buildings and identify the factors that motivate people to evacuate. Design/methodology/approach A literature review was conducted to identify different factors of human behaviour during a situation of fire and identify challenges during the evacuation. Through a mixed research method approach, the paper identifies human background, experience and knowledge with fire safety. The paper discusses the challenges occupants face during evacuation based on previous evacuation experience and what occupants were doing during the fire alarm. Findings The paper has identified the challenges and the factors that affect occupants’ decision during fire emergency in high-rise residential buildings. It is clear from the findings that occupants have limited knowledge and skills on how to deal with fire emergencies. Occupants tend to depend on other evacuation routes. Occupants tend...
Modeling Human Behavior during Building Fires
Evacuation models, including engineering hand calculations and computational tools, are used to evaluate the level of safety provided by buildings during evacuation. Building designs and occupant procedures are based on the results produced from these models, including evacuation time results (i.e., how long building occupants will take to evacuate a building). However, most evacuation models focus primarily on calculating and predicting evacuation movement (i.e., how long will it take an occupant to move from his/her initial position to safety), almost ignoring the prediction of behaviors that occupants perform before and during evacuation movement that can delay their safety (e.g., searching for information, fighting the fire, and helping others). Instead of modeling and predicting behavior of simulated occupants, evacuation models and users often make assumptions and simplifications about occupant behavior (i.e., what people do during evacuations) that can be unrealistic and are likely to produce inaccurate results.
Spatial Familiarity and Exit Route Selection in Emergency Egress
Fire Technology, 2019
Familiarity is widely accepted as a key variable for the exit route selection of occupants of a building in emergency egress, but how to evaluate it has not been well researched. In addition, familiarity with general space layout (building familiarity) and familiarity with exits (exit familiarity) are often interchangeably used, which may cause inappropriate understanding of building and occupant characteristics among fire engineers and architects. In the current study, a paper-based survey was conducted to examine the difference between the two familiarities in a six-story library building. The two familiarities were implicitly evaluated by the spatial knowledge of the participants on the locations of restrooms, elevators, stairways for exit purposes in an emergency, and their current location. Sixty-nine valid responses of the participants' spatial knowledge were semi-quantitatively evaluated based upon the accuracy of the answered position against the actual position. The results reveal that the two familiarities are not synonymous and needs to be understood and handled differently in fire engineering. In particular, the location of emergency-only exit stairways was perceived as low as 20% of non-emergency-only stairways; on average, each of the former and latter stairways was perceived by 8 and 33 participants out of 69 participants, respectively. This result raises concerns about the efficacy of the emergency-only-exit concept. The direction of the next destination out of a building was found to be a key factor to determine the travel route within a building where occupants have good familiarity with the building and surrounding places.
Building safety and human behaviour in fire: A literature review
Fire Safety Journal, 2010
The most crucial aspect of a building's safety in the face of fire is the possibility of safe escape. An important precondition is that its fire safety facilities enable independent and adequate fire response performances by the building's occupants. In practice, it appears that the measures currently required by law do not always provide the support that people in burning buildings need. Consequently, understanding how individuals behave in the case of fire and fire evacuation is essential if we are to bring fire safety measures into line with occupants' needs during an incident. This paper contains a review of the available literature on human behaviour in a fire so far as building safety is concerned. The findings are presented as an overview of the critical factors which determine occupants' fire response performances, namely the characteristics of fire, human beings and buildings. The study highlights that some of the assumptions about the existing paradigm of fire safety in buildings are not consistent with the knowledge set out in the literature. The key observation is that psychonomics appear to have significant influence on occupants' fire response performances. Accordingly, the traditional approach to fire safety will have to be supplemented by scientific knowledge from this field. Hence, there is a need for a new approach to fire safety design in buildings, which is set out herein.
Dissuasive exit signage for building fire evacuation
This work presents the result of a questionnaire study which investigates the design of dissuasive emergency signage, i.e. signage conveying a message of not utilizing a specific exit door. The work analyses and tests a set of key features of dissuasive emergency signage using the Theory of Affordances. The variables having the largest impact on observer preference, interpretation and noticeability of the signage have been identified. Results show that features which clearly negate the exit-message of the original positive exit signage are most effective, for instance a red X-marking placed across the entirety of the exit signage conveys a clear dissuasive message. Other features of note are red flashing lights and alternation of colour. The sense of urgency conveyed by the sign is largely affected by sensory inputs such as red flashing lights or other features which cause the signs to break the tendencies of normalcy.
2016
This paper involves individuals' safety in historical buildings in case of fire. An innovative continuous wayfinding system is proposed by using photoluminescent adhesive tiles placed on the paths floor. The system effectiveness is evaluated through evacuation drills in a significant case study (an Italian-style historical theatre). Evacuation times are reduced up to 30% while using the proposed system in respect to the traditional one, also because of the efficient addressing of secondary paths to occupants. Current fire safety regulations in historical buildings are generally limited to the number and dimension of exits and evacuation paths. This approach clearly clashes with preservation criteria because of the need of invasive layout modifications. On the contrary, a "behavioural design" approach could solve this conflict by proposing evacuation facilities based on effective human behaviours. This work proposes an innovative wayfinding system based on phtoluminescent continuous signs. Experiments in a significant real world scenario demonstrate the possibility to considerably decrease the evacuation timing without building layout modifications. Building heritage fire safety, Historical theatres, PLM materials, Reversible systems for human safety and occupants' evacuation, Continuous wayfinding system
Spatial cognition and wayfinding strategy during building fire
Cognitive Processing, 2006
Simulation of human behavior in space is a powerful research method to advance our understanding of the interaction between people and their environment. It allows for both the examination and testing of models and their underlying theory of cognitive and perceptual phenomena as well as the observation of the system's behavior. This paper outlines the use of specific spatial objects to facilitate escaping from an indoor environment in a crisis situation. To represent and simulate people's processes of wayfinding it is necessary to understand how people immediately make sense of spatial situations while performing a wayfinding task which will occur in a building during fire emergencies. The theoretical outset of the research is the observation that humans show distinct behavioral and cognitive preferences when dealing with wayfinding tasks in dangerous situations. The goal of the research is to organize environmental cues and to use them in decision-making and navigation in an indoor environment in a fire emergency. Construction and inspection of mental representations of spatial environments and exploring these models have been discussed and the proposed computational model tested in an indoor complex building. Initial results verify the reliability of the model.
Modelling occupant interaction with fire conditions using the buildingEXODUS evacuation model
Fire Safety Journal, 2001
This paper provides a broad overview of project HEED (High Rise Evacuation Evaluation Database) and the methodologies employed in the collection and storage of first-hand accounts of evacuation experiences derived from face-to-face interviews of evacuees from the World Trade Center (WTC) Twin Towers complex on 11 September 2001. In particular the paper describes the development of the HEED database. This is a flexible research tool which contains qualitative type data in the form of coded evacuee experiences along with the full interview transcripts. The data and information captured and stored in the HEED database is not only unique, but provides a means to address current and emerging issues relating to human factors associated with the evacuation of high rise buildings.