Fate and Removal of Pharmaceuticals and Illegal Drugs Present in Drinking Water and Wastewater (original) (raw)
Related papers
Pharmaceuticals in Water and Wastewater – Overview
Structure and Environment
The paper presents concentrations of pharmaceuticals in surface water and sewage. Special attention was paid to the content of estrogens in municipal sewage and the method of their disposal. Concentrations of various pharmaceuticals in raw and treated wastewater were compared and the pharmaceuticals in different countries and waters were presented in tables. The most frequently identified drugs in sewage are sex hormones (etradiol, ester, ethinylestradiol, 17 β-estradiol) and the antiepileptic drug Carbamazepine. These drugs are difficult to remove from water and therefore appropriate treatment processes are used, such as: adsorption on active carbon, UV irradiation, etc. Contamination of water with pharmaceuticals has a negative impact on the development of aquatic organisms and can lead to serious human health problems.
Occurrence of pharmaceuticals in surface waters
Science, Technology and Innovation, 2020
This is a short review on the increasing problem of pharmaceutical pollution in surface waters. Non-steroidal anti-inflammatory drugs (NSAIDs) are medicines that are widely used to relieve pain, reduce inflammation, and reduce a high body temperature. The paper presents a literature review on the content of NASIDs in surface waters. Due to the continuous growth of the world's population and the increasing use of pharmaceuticals, the threat to aquatic ecosystems is increasing. Every day, huge loads of pollution are discharged into rivers and seas. Depending on used technology the effectiveness of wastewater treatment varies considerably. The level of removal efficiency by wastewater treatments depends on physicochemical properties of the individual pharmaceutics and on the type of wastewater treatment technology. Therefore, it is recommended to conduct research on removal efficiency of main drug residues in Polish wastewater treatment plants and, if necessary, apply the best available technologies in this area.
Occurrence and Elimination of Pharmaceuticals During Conventional Wastewater Treatment
The Handbook of Environmental Chemistry, 2012
Pharmaceuticals have an important role in the treatment and prevention of disease in both humans and animals. Since they are designed either to be highly active or interact with receptors in humans and animals or to be toxic for many infectious organisms, they may also have unintended effects on animals and microorganisms in the environment. Therefore, the occurrence of pharmaceutical compounds in the environment and their potential effects on human and environmental health has become an active subject matter of actual research. There are several possible sources and routes for pharmaceuticals to reach the environment, but wastewater treatment plants have been identified as the main point of their collection and subsequent release into the environment, via both effluent wastewater and sludge. Conventional systems that use an activated sludge process are still widely employed for wastewater treatment, mostly because they produce effluents that meet required quality standards (suitable for disposal or recycling purposes), at reasonable operating and maintenance costs. However,
Environmental Science and Pollution Research
The concentrations and distribution of β-blockers, lipid regulators, and psychiatric and cancer drugs in the influent and effluent of the municipal wastewater treatment plant (WWTP) and the effluent of 16 hospitals that discharge into the wastewater treatment plant mentioned in this study at two sampling dates in summer and winter were examined. The pharmaceutical contribution of hospitals to municipal wastewater was determined. The removal of target pharmaceuticals was evaluated in a WWTP consisting of conventional biological treatment using activated sludge. Additionally, the potential environmental risk for the aquatic receiving environments (salt lake) was assessed. Beta-blockers and psychiatric drugs were detected in high concentrations in the wastewater samples. Atenolol (919 ng/L) from β-blockers and carbamazepine (7008 ng/L) from psychiatric pharmaceuticals were detected at the highest concentrations in hospital wastewater. The total pharmaceutical concentration determined at the WWTP influent and effluent was between 335 and 737 ng/L in summer and between 174 and 226 ng/L in winter. The concentrations detected in hospital effluents are higher than the concentrations detected in WWTP. The total pharmaceutical contributions from hospitals to the WWTP in summer and winter were determined to be 2% and 4%, respectively. Total pharmaceutical removal in the WWTP ranged from 23 to 54%. According to the risk ratios, atenolol could pose a high risk (risk quotient > 10) for fish in summer and winter. There are different reasons for the increase in pharmaceutical consumption in recent years. One of these reasons is the COVID-19 pandemic, which has been going on for 2 years. In particular, hospitals were operated at full capacity during the pandemic, and the occurrence and concentration of pharmaceuticals used for the therapy of COVID-19 patients has increased in hospital effluent. Pandemic conditions have increased the tendency of people to use psychiatric drugs. It is thought that beta-blocker consumption has increased due to cardiovascular diseases caused by COVID-19. Therefore, the environmental risk of pharmaceuticals for aquatic organisms in hospital effluent should be monitored and evaluated.
Removal of pharmaceutical residues in a pilot wastewater treatment plant
Analytical and Bioanalytical Chemistry, 2007
Concern is growing over the contamination of the environment with pharmaceutical residues, among which non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most abundant groups. Their widespread appearance in the aquatic environment is because of their high consumption and their incomplete removal during wastewater treatment. Because effective operation of wastewater-treatment plants is important for minimising the release of xenobiotic compounds, for example pharmaceutical products, into the aquatic environment, our study focuses on removal of commonly used NSAIDs (ibuprofen, naproxen, ketoprofen, diclofenac) and clofibric acid in a specially designed small-scale pilot wastewater treatment plant (PWWTP). This study shows that, except for diclofenac, steady-rate removal of NSAIDs over a two-year monitoring period has been achieved. Elimination of the compounds in the PWWTP was ≥87% for ibuprofen, naproxen and ketoprofen but only 49–59% for diclofenac. We also studied clofibric acid. Results after one month of operation revealed 30% elimination with no sign of adaptation by the biomass. Also described are degradation products of diclofenac, which we were able to identify because of the similarity of their mass spectra with those in the NIST library and by comparing the retention times of different compounds. Although the structures of these compounds were confirmed with a high probability (99%), we still need to compare the fragmentation of authentic compounds with degradation products formed under our experimental conditions. Degradation products of ibuprofen, naproxen, ketoprofen, and clofibric acid were found but these must be identified by use of high-resolution mass spectrometry and analysis of authentic compounds.
Methods used for removal of pharmaceuticals from wastewater: A review
2020
Inefficiency of conventional methods of water treatment towards removal of pharmaceutical traces from waste water has raised a global concern. This has always resulted in pharmaceutical traces entering the environments. The effect of allowing effluents with untreated or partially treated pharmaceuticals have been documented for aquatic life. This type of waste has potential health risk to human even at low concentration. In most of developing countries, these wastes are not regulated. While looking at the ways to regulate and monitor of this type of pollutant, it should go hand to hand with increasing the efficiency of removing them from waste water. In this review methods capable of degrading pharmaceuticals at different efficiencies have been explained from those based on adsorption, biological and chemical advanced oxidation processes. Also, some areas for further research have been proposed.
Sources and impacts of pharmaceutical components in wastewater and its treatment process: A review
Korean Journal of Chemical Engineering, 2017
Pharmaceutical compounds and their derivatives are major pollutants in the environment, as their metabolites affect the terrestrial as well as aquatic organisms in one or another way. In recent times, many papers have discussed the treatment procedures for single pharmaceutical and mixture of pharmaceutical components, but only few papers have discussed the fate and the exposure of pharmaceutical contaminants in our environment. In this paper, we discuss the sources and the forms of pharmaceutical products and their resultant in the environment and their addition to the microbial and to human communities. A detailed discussion of various treatment techniques from conventional to current techniques, their advantages and disadvantages is given here. Researchers are finding the techniques in order to completely degrade the contaminants and their transformed products from the environment. Among the technique,s nanotechnology was found to be an efficient technique, and the combination of nanotechnology with other conventional technologies gives higher removal efficiency.