Eye Movement and Pupil Measures: A Review (original) (raw)

Abstract

Our subjective visual experiences involve complex interaction between our eyes, our brain, and the surrounding world. It gives us the sense of sight, color, stereopsis, distance, pattern recognition, motor coordination, and more. The increasing ubiquity of gaze-aware technology brings with it the ability to track gaze and pupil measures with varying degrees of fidelity. With this in mind, a review that considers the various gaze measures becomes increasingly relevant, especially considering our ability to make sense of these signals given different spatio-temporal sampling capacities. In this paper, we selectively review prior work on eye movements and pupil measures. We first describe the main oculomotor events studied in the literature, and their characteristics exploited by different measures. Next, we review various eye movement and pupil measures from prior literature. Finally, we discuss our observations based on applications of these measures, the benefits and practical challenges involving these measures, and our recommendations on future eyetracking research directions.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (295)

  1. Abel, L. A., and Hertle, R. W. (1988). "Effects of Psychoactive Drugs on Ocular Motor Behavior," in Neuropsychology of Eye Movements (Hillsdale, NJ: Lawrence Erlbaum Associates), 81-114.
  2. Adamczyk, P. D., and Bailey, B. P. (2004). "If Not Now, when? the Effects of Interruption at Different Moments within Task Execution," in Proceedings of the SIGCHI conference on Human factors in computing systems, 271-278.
  3. Adler, F. H., and Fliegelman, M. (1934). Influence of Fixation on the Visual Acuity. Arch. Ophthalmol. 12, 475-483. doi:10.1001/archopht.1934.00830170013002
  4. Anderson, N. C., Bischof, W. F., Foulsham, T., and Kingstone, A. (2020). Turning the (Virtual) World Around: Patterns in Saccade Direction Vary with Picture Orientation and Shape in Virtual Reality. J. Vis. 20, 21. doi:10.1167/jov.20.8.21
  5. Andersson, R., Nyström, M., and Holmqvist, K. (2010). Sampling Frequency and Eye-Tracking Measures: How Speed Affects Durations, Latencies, and More. J. Eye Move. Res. 3. doi:10.16910/jemr.3.3.6
  6. Ansari, M. F., Kasprowski, P., and Obetkal, M. (2021). Gaze Tracking Using an Unmodified Web Camera and Convolutional Neural Network. Appl. Sci. 11, 9068. doi:10.3390/app11199068
  7. Anson, E. R., Bigelow, R. T., Carey, J. P., Xue, Q.-L., Studenski, S., Schubert, M. C., et al. (2016). Aging Increases Compensatory Saccade Amplitude in the Video Head Impulse Test. Front. Neurol. 7, 113. doi:10.3389/fneur.2016.00113
  8. Ares, G., Giménez, A., Bruzzone, F., Vidal, L., Antúnez, L., and Maiche, A. (2013). Consumer Visual Processing of Food Labels: Results from an Eye-Tracking Study. J. Sens Stud. 28, 138-153. doi:10.1111/joss.12031
  9. Bahill, A. T., Clark, M. R., and Stark, L. (1975). The Main Sequence, a Tool for Studying Human Eye Movements. Math. biosciences 24, 191-204. doi:10.1016/ 0025-5564(75)90075-9
  10. Bahill, A. T., and Laritz, T. (1984). Why Can't Batters Keep Their Eyes on the ball. Am. Scientist 72, 249-253.
  11. Bailey, B. P., and Iqbal, S. T. (2008). Understanding Changes in Mental Workload during Execution of Goal-Directed Tasks and its Application for Interruption Management. ACM Trans. Comput.-Hum. Interact. 14, 1-28. doi:10.1145/ 1314683.1314689
  12. Barbosa, P., Kaski, D., Castro, P., Lees, A. J., Warner, T. T., and Djamshidian, A. (2019). Saccadic Direction Errors Are Associated with Impulsive Compulsive Behaviours in Parkinson's Disease Patients. Jpd 9, 625-630. doi:10.3233/jpd-181460
  13. Barmack, N. H. (1970). Modification of Eye Movements by Instantaneous Changes in the Velocity of Visual Targets. Vis. Res. 10, 1431-1441. doi:10.1016/0042- 6989(70)90093-3
  14. Barnes, G. R., and Asselman, P. T. (1991). The Mechanism of Prediction in Human Smooth Pursuit Eye Movements. J. Physiol. 439, 439-461. doi:10.1113/ jphysiol.1991.sp018675
  15. Barnes, G. R. (2008). Cognitive Processes Involved in Smooth Pursuit Eye Movements. Brain Cogn. 68, 309-326. doi:10.1016/j.bandc.2008.08.020
  16. Bartels, M., and Marshall, S. P. (2012). "Measuring Cognitive Workload across Different Eye Tracking Hardware Platforms," in Proceedings of the symposium on eye tracking research and applications, 161-164. doi:10.1145/ 2168556.2168582
  17. Becker, W., and Fuchs, A. F. (1969). Further Properties of the Human Saccadic System: Eye Movements and Correction Saccades with and without Visual Fixation Points. Vis. Res. 9, 1247-1258. doi:10.1016/0042-6989(69)90112-6
  18. Bednarik, R., Myller, N., Sutinen, E., and Tukiainen, M. (2005). "Applying Eye- Movememt Tracking to Program Visualization," in 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC'05) (IEEE), 302-304.
  19. Bertera, J. H., and Rayner, K. (2000). Eye Movements and the Span of the Effective Stimulus in Visual Search. Perception & Psychophysics 62, 576-585. doi:10.3758/bf03212109
  20. Birmingham, E., Bischof, W. F., and Kingstone, A. (2008). Social Attention and Real-World Scenes: The Roles of Action, Competition and Social Content. Q. J. Exp. Psychol. 61, 986-998. doi:10.1080/17470210701410375
  21. Biscaldi, M., Gezeck, S., and Stuhr, V. (1998). Poor Saccadic Control Correlates with Dyslexia. Neuropsychologia 36, 1189-1202. doi:10.1016/s0028-3932(97) 00170-x Blair, M. R., Watson, M. R., Walshe, R. C., and Maj, F. (2009). Extremely Selective Attention: Eye-Tracking Studies of the Dynamic Allocation of Attention to Stimulus Features in Categorization. J. Exp. Psychol. Learn. Mem. Cogn. 35, 1196-1206. doi:10.1037/a0016272
  22. Blount, W. P. (1927). Studies of the Movements of the Eyelids of Animals: Blinking. Exp. Physiol. 18, 111-125. doi:10.1113/expphysiol.1927.sp000426
  23. Bojko, A. (2006). Using Eye Tracking to Compare Web page Designs: A Case Study. J. Usability Stud. 1, 112-120.
  24. Bours, C. C. A. H., Bakker-Huvenaars, M. J., Tramper, J., Bielczyk, N., Scheepers, F., Nijhof, K. S., et al. (2018). Emotional Face Recognition in Male Adolescents with Autism Spectrum Disorder or Disruptive Behavior Disorder: an Eye- Tracking Study. Eur. Child. Adolesc. Psychiatry 27, 1143-1157. doi:10.1007/ s00787-018-1174-4
  25. Boxer, A. L., Garbutt, S., Seeley, W. W., Jafari, A., Heuer, H. W., Mirsky, J., et al. (2012). Saccade Abnormalities in Autopsy-Confirmed Frontotemporal Lobar Degeneration and Alzheimer Disease. Arch. Neurol. 69, 509-517. doi:10.1001/ archneurol.2011.1021
  26. Bozkir, E., Geisler, D., and Kasneci, E. (2019). "Person Independent, Privacy Preserving, and Real Time Assessment of Cognitive Load Using Eye Tracking in a Virtual Reality Setup," in 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (IEEE), 1834-1837. doi:10.1109/vr.2019.8797758
  27. Braun, D. I., Pracejus, L., and Gegenfurtner, K. R. (2006). Motion Aftereffect Elicits Smooth Pursuit Eye Movements. J. Vis. 6, 1. doi:10.1167/6.7.1
  28. Březinová, V., and Kendell, R. (1977). Smooth Pursuit Eye Movements of Schizophrenics and normal People under Stress. Br. J. Psychiatry 130, 59-63.
  29. Brutten, G. J., and Janssen, P. (1979). An Eye-Marking Investigation of Anticipated and Observed Stuttering. J. Speech Lang. Hear. Res. 22, 20-28. doi:10.1044/ jshr.2201.20
  30. Buonocore, A., Chen, C.-Y., Tian, X., Idrees, S., Münch, T. A., and Hafed, Z. M. (2017). Alteration of the Microsaccadic Velocity-Amplitude Main Sequence Relationship after Visual Transients: Implications for Models of Saccade Control. J. Neurophysiol. 117, 1894-1910. doi:10.1152/jn.00811.2016
  31. Buonocore, A., McIntosh, R. D., and Melcher, D. (2016). Beyond the point of No Return: Effects of Visual Distractors on Saccade Amplitude and Velocity. J. Neurophysiol. 115, 752-762. doi:10.1152/jn.00939.2015
  32. Burke, M. R., and Barnes, G. R. (2006). Quantitative Differences in Smooth Pursuit and Saccadic Eye Movements. Exp. Brain Res. 175, 596-608. doi:10.1007/ s00221-006-0576-6
  33. Burr, D. C., Morrone, M. C., and Ross, J. (1994). Selective Suppression of the Magnocellular Visual Pathway during Saccadic Eye Movements. Nature 371, 511-513. doi:10.1038/371511a0
  34. Buswell, G. T. (1935). How People Look at Pictures: A Study of the Psychology and Perception in Art. Chicago: Univ. Chicago Press.
  35. Cardona, G., García, C., Serés, C., Vilaseca, M., and Gispets, J. (2011). Blink Rate, Blink Amplitude, and Tear Film Integrity during Dynamic Visual Display Terminal Tasks. Curr. Eye Res. 36, 190-197. doi:10.3109/ 02713683.2010.544442
  36. Carl, J. R., and Gellman, R. S. (1987). Human Smooth Pursuit: Stimulus-dependent Responses. J. Neurophysiol. 57, 1446-1463. doi:10.1152/jn.1987.57.5.1446
  37. Carpenter, R. H. (1988). Movements of the Eyes. 2nd Rev Pion Limited.
  38. Castello, E., Baroni, N., and Pallestrini, E. (1998). Neurotological and Auditory Brain Stem Response Findings in Human Immunodeficiency Virus-Positive Patients without Neurologic Manifestations. Ann. Otol Rhinol Laryngol. 107, 1054-1060. doi:10.1177/000348949810701210
  39. Catherine, L., and James, M. (2001). Educating Children with Autism. Washington, DC: National Academies Press.
  40. Ceder, A. (1977). Drivers' Eye Movements as Related to Attention in Simulated Traffic Flow Conditions. Hum. Factors 19, 571-581. doi:10.1177/ 001872087701900606
  41. Ceravolo, M. G., Farina, V., Fattobene, L., Leonelli, L., and Raggetti, G. (2019). Presentational Format and Financial Consumers' Behaviour: an Eye-Tracking Study. Int. J. Bank Marketing 37 (3), 821-837. doi:10.1108/ijbm-02-2018-0041
  42. Chen, S., and Epps, J. (2014). Using Task-Induced Pupil Diameter and Blink Rate to Infer Cognitive Load. Human-Computer Interaction 29, 390-413. doi:10.1080/07370024.2014.892428
  43. Cherng, Y. G., Baird, T., Chen, J. T., and Wang, C. A. (2020). Background Luminance Effects on Pupil Size Associated with Emotion and Saccade Preparation. Sci. Rep. 10, 1-11. doi:10.1038/s41598-020-72954-z
  44. Cho, S.-J., Brown-Schmidt, S., and Lee, W.-y. (2018). Autoregressive Generalized Linear Mixed Effect Models with Crossed Random Effects: An Application to Intensive Binary Time Series Eye-Tracking Data. Psychometrika 83, 751-771. doi:10.1007/s11336-018-9604-2
  45. Choi, J. E. S., Vaswani, P. A., and Shadmehr, R. (2014). Vigor of Movements and the Cost of Time in Decision Making. J. Neurosci. 34, 1212-1223. doi:10.1523/ jneurosci.2798-13.2014
  46. Chu, C. A., Rosenfield, M., and Portello, J. K. (2014). Blink Patterns. Optom. Vis. Sci. 91, 297-302. doi:10.1097/opx.0000000000000157
  47. Churchland, A. K., and Lisberger, S. G. (2002). Gain Control in Human Smooth- Pursuit Eye Movements. J. Neurophysiol. 87, 2936-2945. doi:10.1152/ jn.2002.87.6.2936
  48. Clay, V., König, P., and König, S. (2019). Eye Tracking in Virtual Reality. J. Eye Mov Res. 12. doi:10.16910/jemr.12.1.3
  49. Coeckelbergh, T. R. M., Brouwer, W. H., Cornelissen, F. W., Van Wolffelaar, P., and Kooijman, A. C. (2002). The Effect of Visual Field Defects on Driving Performance. Arch. Ophthalmol. 120, 1509-1516. doi:10.1001/ archopht.120.11.1509
  50. Coëffé, C., and O'regan, J. K. (1987). Reducing the Influence of Non-target Stimuli on Saccade Accuracy: Predictability and Latency Effects. Vis. Res. 27, 227-240. doi:10.1016/0042-6989(87)90185-4
  51. Collewijn, H., and Tamminga, E. P. (1984). Human Smooth and Saccadic Eye Movements during Voluntary Pursuit of Different Target Motions on Different Backgrounds. J. Physiol. 351, 217-250. doi:10.1113/ jphysiol.1984.sp015242
  52. Connolly, J. D., Goodale, M. A., Goltz, H. C., and Munoz, D. P. (2005). Fmri Activation in the Human Frontal Eye Field Is Correlated with Saccadic Reaction Time. J. Neurophysiol. 94, 605-611. doi:10.1152/jn.00830.2004
  53. Cornsweet, T. N. (1956). Determination of the Stimuli for Involuntary Drifts and Saccadic Eye Movements*. J. Opt. Soc. Am. 46, 987-993. doi:10.1364/ josa.46.000987
  54. Costa, M., Simone, A., Vignali, V., Lantieri, C., and Palena, N. (2018). Fixation Distance and Fixation Duration to Vertical Road Signs. Appl. Ergon. 69, 48-57. doi:10.1016/j.apergo.2017.12.017
  55. Crevits, L., Simons, B., and Wildenbeest, J. (2003). Effect of Sleep Deprivation on Saccades and Eyelid Blinking. Eur. Neurol. 50, 176-180. doi:10.1159/000073060
  56. Daugherty, B. C., Duchowski, A. T., House, D. H., and Ramasamy, C. (2010). "Measuring Vergence over Stereoscopic Video with a Remote Eye Tracker," in Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, 97-100. doi:10.1145/1743666.1743690
  57. Day, B. L., and Fitzpatrick, R. C. (2005). The Vestibular System. Curr. Biol. 15, R583-R586. doi:10.1016/j.cub.2005.07.053
  58. de Brouwer, S., Missal, M., and Lefèvre, P. (2001). Role of Retinal Slip in the Prediction of Target Motion during Smooth and Saccadic Pursuit. J. Neurophysiol. 86, 550-558. doi:10.1152/jn.2001.86.2.550
  59. De Brouwer, S., Yuksel, D., Blohm, G., Missal, M., and Lefèvre, P. (2002). What Triggers Catch-Up Saccades during Visual Tracking. J. Neurophysiol. 87, 1646-1650. doi:10.1152/jn.00432.2001
  60. De Bruin, J., Malan, K., and Eloff, J. (2013). "Saccade Deviation Indicators for Automated Eye Tracking Analysis," in Proceedings of the 2013 conference on eye tracking south africa, 47-54. doi:10.1145/2509315.2509324
  61. de Hemptinne, C., Lefèvre, P., and Missal, M. (2006). Influence of Cognitive Expectation on the Initiation of Anticipatory and Visual Pursuit Eye Movements in the Rhesus Monkey. J. Neurophysiol. 95, 3770-3782. doi:10.1152/jn.00007.2006
  62. Dell'Osso, L. F., Van der Steen, J., Steinman, R. M., and Collewijn, H. (1992). Foveation Dynamics in Congenital Nystagmus. II: Smooth Pursuit. Doc Ophthalmol. 79, 25-49. doi:10.1007/BF00160131
  63. Demberg, V., Kiagia, E., and Sayeed, A. (2013). The index of Cognitive Activity as a Measure of Linguistic Processing. reading time 500, 1500.
  64. Demberg, V. (2013). "Pupillometry: the index of Cognitive Activity in a Dual-Task Study," in Proceedings of the Annual Meeting of the Cognitive Science Society, 2154-2159.35
  65. Dimigen, O., Valsecchi, M., Sommer, W., and Kliegl, R. (2009). Human Microsaccade-Related Visual Brain Responses. J. Neurosci. 29, 12321-12331. doi:10.1523/jneurosci.0911-09.2009
  66. Ditchburn, R. W., and Ginsborg, B. L. (1953). Involuntary Eye Movements during Fixation. J. Physiol. 119, 1-17. doi:10.1113/jphysiol.1953.sp004824
  67. Dobson, M. W. (1977). Eye Movement Parameters and Map reading. The Am. Cartographer 4, 39-58. doi:10.1559/152304077784080022
  68. Dodge, R. (1903). Five Types of Eye Movement in the Horizontal meridian Plane of the Field of Regard. Am. J. physiology-legacy content 8, 307-329. doi:10.1152/ ajplegacy.1903.8.4.307
  69. Dodge, R. (1900). Visual Perception during Eye Movement. Psychol. Rev. 7, 454-465. doi:10.1037/h0067215
  70. Donovan, T., and Litchfield, D. (2013). Looking for Cancer: Expertise Related Differences in Searching and Decision Making. Appl. Cognit. Psychol. 27, 43-49. doi:10.1002/acp.2869
  71. Doughty, M. J. (2001). Consideration of Three Types of Spontaneous Eyeblink Activity in normal Humans: during reading and Video Display Terminal Use, in Primary Gaze, and while in Conversation. Optom. Vis. Sci. 78, 712-725. doi:10.1097/00006324-200110000-00011
  72. Doughty, M. J. (2019). Effect of Distance Vision and Refractive Error on the Spontaneous Eye Blink Activity in Human Subjects in Primary Eye Gaze. J. Optom. 12, 111-119. doi:10.1016/j.optom.2018.03.004
  73. Doughty, M. J. (2002). Further Assessment of Gender-and Blink Pattern-Related Differences in the Spontaneous Eyeblink Activity in Primary Gaze in Young Adult Humans. Optom. Vis. Sci. 79, 439-447. doi:10.1097/00006324- 200207000-00013
  74. Doughty, M. J., and Naase, T. (2006). Further Analysis of the Human Spontaneous Eye Blink Rate by a Cluster Analysis-Based Approach to Categorize Individuals with 'Normal' versus 'Frequent' Eye Blink Activity. Eye & contact lens 32, 294-299. doi:10.1097/01.icl.0000224359.32709.4d
  75. Du, P., and MacDonald, E. F. (2014). Eye-tracking Data Predict Importance of Product Features and Saliency of Size Change. J. Mech. Des. 136. doi:10.1115/ 1.4027387
  76. Duchowski, A. T. (2002). A Breadth-First Survey of Eye-Tracking Applications. Behav. Res. Methods Instr. Comput. 34, 455-470. doi:10.3758/BF03195475
  77. Duchowski, A. T. (2017). Eye Tracking Methodology: Theory and Practice. Springer.
  78. Duchowski, A. T., Krejtz, K., Gehrer, N. A., Bafna, T., and Baekgaard, P. (2020). "The Low/high index of Pupillary Activity," in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1-12. doi:10.1145/ 3313831.3376394
  79. Duchowski, A. T., Krejtz, K., Krejtz, I., Biele, C., Niedzielska, A., Kiefer, P., et al. (2018). "The index of Pupillary Activity: Measuring Cognitive Load Vis-À-Vis Task Difficulty with Pupil Oscillation," in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1-13.
  80. Duncan, J., Ward, R., and Shapiro, K. (1994). Direct Measurement of Attentional Dwell Time in Human Vision. Nature 369, 313-315. doi:10.1038/369313a0
  81. Duret, F., Buquet, C., Charlier, J., Mermoud, C., Viviani, P., and Safran, A. B. (1999). Refixation Strategies in Four Patients with Macular Disorders. Neuro- Ophthalmology 22, 209-220. doi:10.1076/noph.22.4.209.3718
  82. Eberhard, K. M., Spivey-Knowlton, M. J., Sedivy, J. C., and Tanenhaus, M. K. (1995). Eye Movements as a Window into Real-Time Spoken Language Comprehension in Natural Contexts. J. Psycholinguist Res. 24, 409-436. doi:10.1007/bf02143160
  83. Ebitz, R. B., and Moore, T. (2019). Both a Gauge and a Filter: Cognitive Modulations of Pupil Size. Front. Neurol. 9, 1190. doi:10.3389/fneur.2018.01190
  84. El Haj, M., and Moustafa, A. A. (2021). Pupil Dilation as an Indicator of Future Thinking. Neurol. Sci. 42, 647-653. doi:10.1007/s10072-020-04533-z
  85. Eldar, E., Cohen, J. D., and Niv, Y. (2013). The Effects of Neural Gain on Attention and Learning. Nat. Neurosci. 16, 1146-1153. doi:10.1038/nn.3428
  86. Ellis, S., Candrea, R., Misner, J., Craig, C. S., Lankford, C. P., and Hutchinson, T. E. (1998). "Windows to the Soul? what Eye Movements Tell Us about Software Usability," in Proceedings of the usability professionals' association conference, 151-178.
  87. Essig, K., Pomplun, M., and Ritter, H. (2004). "Application of a Novel Neural Approach to 3d Gaze Tracking," in Vergence Eye-Movements in Autostereograms, 26. eScholarship.
  88. Ettinger, U., Kumari, V., Chitnis, X. A., Corr, P. J., Sumich, A. L., Rabe-Hesketh, S., et al. (2002). Relationship between Brain Structure and Saccadic Eye Movements in Healthy Humans. Neurosci. Lett. 328, 225-228. doi:10.1016/ s0304-3940(02)00517-7
  89. Farbos, B., Mollard, R., Cabon, P., and David, H. (2000). "Measurement of Fatigue and Adaptation in Large-Scale Real-Time Atc Simulation," in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Los Angeles, CA (Los Angeles, CA: SAGE Publications Sage CA), 3-204. doi:10.1177/ 154193120004401905
  90. Fehringer, B. C. O. F. (2021). Optimizing the Usage of Pupillary Based Indicators for Cognitive Workload. J. Eye Mov Res. 14. doi:10.16910/jemr.14.2.4
  91. Fehringer, B. C. (2020). "One Threshold to Rule Them All? Modification of the index of Pupillary Activity to Optimize the Indication of Cognitive Load," in ACM Symposium on Eye Tracking Research and Applications, 1-5.
  92. Findlay, J. M., Walker, R., and Kentridge, R. W. (1995). Eye Movement Research: Mechanisms, Processes and Applications. Elsevier.
  93. Fischer, B., and Breitmeyer, B. (1987). Mechanisms of Visual Attention Revealed by Saccadic Eye Movements. Neuropsychologia 25, 73-83. doi:10.1016/0028- 3932(87)90044-3
  94. Fischer, B., and Weber, H. (1993). Express Saccades and Visual Attention. Behav. Brain Sci. 16, 553-567. doi:10.1017/s0140525x00031575
  95. Fisher, D. F., Monty, R. A., and Senders, J. W. (2017). Eye Movements: Cognition and Visual Perception, Vol. 8. Oxfordshire, England, UK: Routledge.
  96. Foulsham, T., Kingstone, A., and Underwood, G. (2008). Turning the World Around: Patterns in Saccade Direction Vary with Picture Orientation. Vis. Res. 48, 1777-1790. doi:10.1016/j.visres.2008.05.018
  97. Fukushima, K., Fukushima, J., Warabi, T., and Barnes, G. R. (2013). Cognitive Processes Involved in Smooth Pursuit Eye Movements: Behavioral Evidence, Neural Substrate and Clinical Correlation. Front. Syst. Neurosci. 7, 4. doi:10.3389/fnsys.2013.00004
  98. Galley, N., Schleicher, R., and Galley, L. (2004). Blink Parameters as Indicators of Driver's Sleepiness-Possibilities and Limitations. Vis. vehicles 10, 189-196.
  99. Galley, N. (1993). The Evaluation of the Electrooculogram as a Psychophysiological Measuring Instrument in the Driver Study of Driver Behaviour. Ergonomics 36, 1063-1070. doi:10.1080/00140139308967978
  100. Gbadamosi, J., and Zangemeister, W. H. (2001). Visual Imagery in Hemianopic Patients. J. Cogn. Neurosci. 13, 855-866. doi:10.1162/089892901753165782
  101. Goldberg, J. H., and Helfman, J. I. (2010). "Scanpath Clustering and Aggregation," in Proceedings of the 2010 symposium on eye-tracking research & applications, 227-234. doi:10.1145/1743666.1743721
  102. Goldberg, J. H., and Kotval, X. P. (1999). Computer Interface Evaluation Using Eye Movements: Methods and Constructs. Int. J. Ind. Ergon. 24, 631-645. doi:10.1016/s0169-8141(98)00068-7
  103. Goldberg, J. H., and Wichansky, A. M. (2003). "Eye Tracking in Usability Evaluation," in The Mind's Eye. Editors J. Hyönä, R. Radach, and H. Deubel (Amsterdam: North-Holland), 493-516. doi:10.1016/B978-044451020-4/ 50027-X Goldberg, J. M., and Fernández, C. (1984). The Vestibular System. Handbook Physiol. 3, 977-1022. doi:10.1002/cphy.cp010321
  104. Goldberg, M. E., Eggers, H., and Gouras, P. (1991). The Oculomotor System. Principles Neural Sci., 660-676.
  105. Gray, L. S., Winn, B., and Gilmartin, B. (1993). Accommodative Microfluctuations and Pupil Diameter. Vis. Res. 33, 2083-2090. doi:10.1016/0042-6989(93) 90007-j Griffiths, A., Marshall, R., and Richens, A. (1984). Saccadic Eye Movement Analysis as a Measure of Drug Effects on Human Psychomotor Performance. Br. J. Clin. Pharmacol. 18, 73S-82S. doi:10.1111/j.1365- 2125.1984.tb02584.x
  106. Grindinger, T. J., Murali, V. N., Tetreault, S., Duchowski, A. T., Birchfield, S. T., and Orero, P. (2010). "Algorithm for Discriminating Aggregate Gaze Points: Comparison with Salient Regions-Of-Interest," in Asian Conference on Computer Vision (Springer), 390-399.
  107. Guillon, Q., Afzali, M. H., Rogé, B., Baduel, S., Kruck, J., and Hadjikhani, N. (2015). The Importance of Networking in Autism Gaze Analysis. PLoS one 10, e0141191. doi:10.1371/journal.pone.0141191
  108. Guo, F., Ding, Y., Liu, W., Liu, C., and Zhang, X. (2016). Can Eye-Tracking Data Be Measured to Assess Product Design?: Visual Attention Mechanism Should Be Considered. Int. J. Ind. Ergon. 53, 229-235. doi:10.1016/j.ergon.2015.12.001
  109. Hafed, Z. M., Chen, C.-Y., and Tian, X. (2015). Vision, Perception, and Attention through the Lens of Microsaccades: Mechanisms and Implications. Front. Syst. Neurosci. 9, 167. doi:10.3389/fnsys.2015.00167
  110. Hafed, Z. M., and Clark, J. J. (2002). Microsaccades as an Overt Measure of covert Attention Shifts. Vis. Res. 42, 2533-2545. doi:10.1016/s0042-6989(02)00263-8
  111. Hauland, G., and Duijm, N. (2002). "Eye Movement Based Measures of Team Situation Awareness (Tsa)," in Japan-halden MMS Workshop (Kyoto, Japan: Kyoto University), 82-85.
  112. He, Y., Su, Q., Wang, L., He, W., Tan, C., Zhang, H., et al. (2019). The Characteristics of Intelligence Profile and Eye Gaze in Facial Emotion Recognition in Mild and Moderate Preschoolers with Autism Spectrum Disorder. Front. Psychiatry 10, 402. doi:10.3389/fpsyt.2019.00402
  113. Heilmann, F., and Witte, K. (2021). Perception and Action under Different Stimulus Presentations: A Review of Eye-Tracking Studies with an Extended View on Possibilities of Virtual Reality. Appl. Sci. 11, 5546. doi:10.3390/ app11125546
  114. Hejtmancik, J. F., Cabrera, P., Chen, Y., M'Hamdi, O., and Nickerson, J. M. (2017). "Vision," in Conn's Translational Neuroscience. Editor P. M. Conn (San Diego: Academic Press), 399-438. doi:10.1016/B978-0-12-802381-5.00031-2
  115. Heminghous, J., and Duchowski, A. T. (2006). "Icomp: a Tool for Scanpath Visualization and Comparison," in Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization, 152.
  116. Henderson, J. M., Choi, W., Luke, S. G., and Schmidt, J. (2018). Neural Correlates of Individual Differences in Fixation Duration during Natural reading. Q. J. Exp. Psychol. 71, 314-323. doi:10.1080/17470218.2017.1329322
  117. Hess, E. H., and Polt, J. M. (1964). Pupil Size in Relation to Mental Activity during Simple Problem-Solving. Science 143, 1190-1192. doi:10.1126/ science.143.3611.1190
  118. Hessels, R. S., and Hooge, I. T. C. (2019). Eye Tracking in Developmental Cognitive Neuroscience -the Good, the Bad and the Ugly. Dev. Cogn. Neurosci. 40, 100710. doi:10.1016/j.dcn.2019.100710
  119. Hessels, R. S., Kemner, C., van den Boomen, C., and Hooge, I. T. C. (2016). The Area-Of-Interest Problem in Eyetracking Research: A Noise-Robust Solution for Face and Sparse Stimuli. Behav. Res. 48, 1694-1712. doi:10.3758/s13428- 015-0676-y
  120. Hessels, R. S., Niehorster, D. C., Nyström, M., Andersson, R., and Hooge, I. T. C. (2018). Is the Eye-Movement Field Confused about Fixations and Saccades? A Survey Among 124 Researchers. R. Soc. Open Sci., 180502. doi:10.1098/ rsos.180502
  121. Hoang Duc, A., Bays, P., and Husain, M. (2008). Eye Movements as a Probe of Attention. Prog. Brain Res. 171, 403-411. doi:10.1016/s0079-6123(08)00659-6
  122. Holland, C., and Komogortsev, O. V. (2011). "Biometric Identification via Eye Movement Scanpaths in reading," in 2011 International joint conference on biometrics (IJCB), 1-8. doi:10.1109/ijcb.2011.6117536IEEE
  123. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., and Van de Weijer, J. (2011). Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford, UK: OUP Oxford.
  124. Horley, K., Williams, L. M., Gonsalvez, C., and Gordon, E. (2003). Social Phobics Do Not See Eye to Eye:. J. anxiety Disord. 17, 33-44. doi:10.1016/s0887- 6185(02)00180-9
  125. Hubel, D. H. (1995). Eye, Brain, and Vision. Scientific American Library/Scientific American Books.
  126. Hubel, D. H., and Wiesel, T. N. (1979). Brain Mechanisms of Vision. Sci. Am. 241, 150-162. doi:10.1038/scientificamerican0979-150
  127. Hüsser, A., and Wirth, W. (2014). Do investors Show an Attentional Bias toward Past Performance? an Eye-Tracking experiment on Visual Attention to Mutual Fund Disclosures in Simplified Fund Prospectuses. J. Financ. Serv. Mark 19, 169-185. doi:10.1057/fsm.2014.20
  128. Hyönä, J., Tommola, J., and Alaja, A.-M. (1995). Pupil Dilation as a Measure of Processing Load in Simultaneous Interpretation and Other Language Tasks. The Q. J. Exp. Psychol. Section A 48, 598-612. doi:10.1080/14640749508401407
  129. Iqbal, S. T., Zheng, X. S., and Bailey, B. P. (2004). "Task-evoked Pupillary Response to Mental Workload in Human-Computer Interaction," in CHI'04 Extended Abstracts on Human Factors in Computing Systems, 1477-1480. doi:10.1145/ 985921.986094
  130. Jacob, R. J. K., and Karn, K. S. (2003). "Eye Tracking in Human-Computer Interaction and Usability Research," in The Mind's Eye. Editors J. Hyönä, R. Radach, and H. Deubel (Amsterdam: North-Holland), 573-605. doi:10.1016/ B978-044451020-4/50031-1
  131. Jainta, S., Vernet, M., Yang, Q., and Kapoula, Z. (2011). The Pupil Reflects Motor Preparation for Saccades -Even before the Eye Starts to Move. Front. Hum. Neurosci. 5, 97. doi:10.3389/fnhum.2011.00097
  132. Jarodzka, H., Holmqvist, K., and Nyström, M. (2010). "A Vector-Based, Multidimensional Scanpath Similarity Measure," in Proceedings of the 2010 symposium on eye-tracking research & applications, 211-218. doi:10.1145/ 1743666.1743718
  133. Jayawardena, G., and Jayarathna, S. (2021). "Automated Filtering of Eye Movements Using Dynamic Aoi in Multiple Granularity Levels," in International Journal of Multimedia Data Engineering and Management (IJMDEM), 12, 49-64. doi:10.4018/ijmdem.2021010104
  134. Jayawardena, G., Michalek, A., Duchowski, A., and Jayarathna, S. (2020). "Pilot Study of Audiovisual Speech-In-Noise (Sin) Performance of Young Adults with Adhd," in ACM Symposium on Eye Tracking Research and Applications, 1-5. doi:10.1145/3379156.3391373
  135. Jensen, K., Beylergil, S. B., and Shaikh, A. G. (2019). Slow Saccades in Cerebellar Disease. cerebellum ataxias 6, 1-9. doi:10.1186/s40673-018-0095-9
  136. Jiang, M.-Q. (1996). The Role of Attention Mechanisms in Smooth Pursuit Performance in normal and Schizophrenic Subjects. Iowa City, IA: The University of Iowa.
  137. Jongkees, B. J., and Colzato, L. S. (2016). Spontaneous Eye Blink Rate as Predictor of Dopamine-Related Cognitive Function-A Review. Neurosci. Biobehavioral Rev. 71, 58-82. doi:10.1016/j.neubiorev.2016.08.020
  138. Joshi, S., Li, Y., Kalwani, R. M., and Gold, J. I. (2016). Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 89, 221-234. doi:10.1016/ j.neuron.2015.11.028
  139. Kao, G. W., and Morrow, M. J. (1994). The Relationship of Anticipatory Smooth Eye Movement to Smooth Pursuit Initiation. Vis. Res. 34, 3027-3036. doi:10.1016/0042-6989(94)90276-3
  140. Karsh, R., and Breitenbach, F. (1983). Looking at Looking: The Amorphous Fixation Measure. Eye movements Psychol. functions: Int. views, 53-64. doi:10.4324/9781003165538-6
  141. Killian, N. J., Potter, S. M., and Buffalo, E. A. (2015). Saccade Direction Encoding in the Primate Entorhinal Cortex during Visual Exploration. Proc. Natl. Acad. Sci. USA 112, 15743-15748. doi:10.1073/pnas.1417059112
  142. Kimble, M. O., Fleming, K., Bandy, C., Kim, J., and Zambetti, A. (2010). Eye Tracking and Visual Attention to Threating Stimuli in Veterans of the iraq War. J. anxiety Disord. 24, 293-299. doi:10.1016/j.janxdis.2009.12.006
  143. Knox, P. C., and Wolohan, F. D. A. (2014). Cultural Diversity and Saccade Similarities: Culture Does Not Explain Saccade Latency Differences between Chinese and Caucasian Participants. PloS one 9, e94424. doi:10.1371/ journal.pone.0094424
  144. Komogortsev, O., Holland, C., Jayarathna, S., and Karpov, A. (2013). 2D Linear Oculomotor Plant Mathematical Model. ACM Trans. Appl. Percept. 10, 1-18. doi:10.1145/2536764.2536774
  145. Komogortsev, O. V., Jayarathna, S., Koh, D. H., and Gowda, S. M. (2010). "Qualitative and Quantitative Scoring and Evaluation of the Eye Movement Classification Algorithms," in Proceedings of the 2010 Symposium on eye- tracking research & applications, 65-68. doi:10.1145/1743666.1743682
  146. Korbach, A., Brünken, R., and Park, B. (2018). Differentiating Different Types of Cognitive Load: A Comparison of Different Measures. Educ. Psychol. Rev. 30, 503-529. doi:10.1007/s10648-017-9404-8
  147. Korbach, A., Brünken, R., and Park, B. (2017). Measurement of Cognitive Load in Multimedia Learning: a Comparison of Different Objective Measures. Instr. Sci. 45, 515-536. doi:10.1007/s11251-017-9413-5
  148. Koster, W. (1895). Étude sur les cônes et les bâtonnets dans la region de la fovea centralis de la rétine chez l'homme. Arch. D'opht. 15, 428.
  149. Krafka, K., Khosla, A., Kellnhofer, P., Kannan, H., Bhandarkar, S., Matusik, W., et al. (2016). "Eye Tracking for Everyone," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2176-2184. doi:10.1109/cvpr.2016.239
  150. Krauzlis, R. J. (2004). Recasting the Smooth Pursuit Eye Movement System. J. Neurophysiol. 91, 591-603. doi:10.1152/jn.00801.2003
  151. Krejtz, K., Żurawska, J., Duchowski, A. T., and Wichary, S. (2020). Pupillary and Microsaccadic Responses to Cognitive Effort and Emotional Arousal during Complex Decision Making. J. Eye Mov Res. 13. doi:10.16910/jemr.13.5.2
  152. Krejtz, K., Duchowski, A., Szmidt, T., Krejtz, I., González Perilli, F., Pires, A., et al. (2015). Gaze Transition Entropy. ACM Trans. Appl. Percept. 13, 1-20. doi:10.1145/2834121
  153. Krejtz, K., Duchowski, A. T., Niedzielska, A., Biele, C., and Krejtz, I. (2018). Eye Tracking Cognitive Load Using Pupil Diameter and Microsaccades with Fixed Gaze. PloS one 13, e0203629. doi:10.1371/journal.pone.0203629
  154. Krejtz, K., Szmidt, T., Duchowski, A. T., and Krejtz, I. (2014). "Entropy-based Statistical Analysis of Eye Movement Transitions," in Proceedings of the Symposium on Eye Tracking Research and Applications, 159-166. doi:10.1145/2578153.2578176
  155. Krupinski, E. A. (1996). Visual Scanning Patterns of Radiologists Searching Mammograms. Acad. Radiol. 3, 137-144. doi:10.1016/s1076-6332(05)80381-2
  156. Ladda, J., Eggert, T., Glasauer, S., and Straube, A. (2007). Velocity Scaling of Cue- Induced Smooth Pursuit Acceleration Obeys Constraints of Natural Motion. Exp. Brain Res. 182, 343-356. doi:10.1007/s00221-007-0988-y
  157. Lai, H. Y., Saavedra-Pena, G., Sodini, C. G., Sze, V., and Heldt, T. (2019). Measuring Saccade Latency Using Smartphone Cameras. IEEE J. Biomed. Health Inform. 24, 885-897. doi:10.1109/JBHI.2019.2913846
  158. Land, M. F., and Furneaux, S. (1997). The Knowledge Base of the Oculomotor System. Phil. Trans. R. Soc. Lond. B 352, 1231-1239. doi:10.1098/rstb.1997.0105
  159. Le Meur, O., Coutrot, A., Liu, Z., Rämä, P., Le Roch, A., and Helo, A. (2017). Visual Attention Saccadic Models Learn to Emulate Gaze Patterns from Childhood to Adulthood. IEEE Trans. Image Process. 26, 4777-4789. doi:10.1109/ tip.2017.2722238
  160. Lee, K. I., Jeon, J. H., and Song, B. C. (2020). "Deep Learning-Based Pupil center Detection for Fast and Accurate Eye Tracking System," in European Conference on Computer Vision (Springer), 36-52. doi:10.1007/978-3-030-58529-7_3
  161. Lehtinen, I., Lang, A. H., Jäntti, V., and Keskinen, E. (1979). Acute Effects of Alcohol on Saccadic Eye Movements. Psychopharmacology 63, 17-23. doi:10.1007/bf00426915
  162. Lisberger, S. G., Morris, E., and Tychsen, L. (1987). Visual Motion Processing and Sensory-Motor Integration for Smooth Pursuit Eye Movements. Annu. Rev. Neurosci. 10 (1), 97-129. doi:10.1146/annurev.ne.10.030187.000525
  163. Lisi, M., Solomon, J. A., and Morgan, M. J. (2019). Gain Control of Saccadic Eye Movements Is Probabilistic. Proc. Natl. Acad. Sci. USA 116, 16137-16142. doi:10.1073/pnas.1901963116
  164. MacAskill, M. R., Anderson, T. J., and Jones, R. D. (2002). Adaptive Modification of Saccade Amplitude in Parkinson's Disease. Brain 125, 1570-1582. doi:10.1093/ brain/awf168
  165. Macdonald, J. S. P., and Lavie, N. (2011). Visual Perceptual Load Induces Inattentional Deafness. Atten Percept Psychophys 73, 1780-1789. doi:10.3758/s13414-011-0144-4
  166. Maffei, A., and Angrilli, A. (2019). Spontaneous Blink Rate as an index of Attention and Emotion during Film Clips Viewing. Physiol. Behav. 204, 256-263. doi:10.1016/j.physbeh.2019.02.037
  167. Mahanama, B., Jayawardana, Y., and Jayarathna, S. (2020). "Gaze-net: Appearance- Based Gaze Estimation Using Capsule Networks," in Proceedings of the 11th Augmented Human International Conference, 1-4.
  168. Maier, J. X., and Groh, J. M. (2009). Multisensory Guidance of Orienting Behavior. Hearing Res. 258, 106-112. doi:10.1016/j.heares.2009.05.008
  169. Maier, S. U., and Grueschow, M. (2021). Pupil Dilation Predicts Individual Self- Regulation success across Domains. Sci. Rep. 11, 1-18. doi:10.1038/s41598-021- 93121-y Mania, K., McNamara, A., and Polychronakis, A. (2021). "Gaze-aware Displays and Interaction," in ACM SIGGRAPH 2021 Courses, 1-67. doi:10.1145/ 3450508.3464606
  170. Marshall, S. P. (2007). Identifying Cognitive State from Eye Metrics. Aviat Space Environ. Med. 78, B165-B175.
  171. Marshall, S. P. (2000). Method and Apparatus for Eye Tracking and Monitoring Pupil Dilation to Evaluate Cognitive Activity. US Patent 6, 051-090. [Dataset].
  172. Marshall, S. P. (2002). "The index of Cognitive Activity: Measuring Cognitive Workload," in Proceedings of the IEEE 7th conference on Human Factors and Power Plants (IEEE), 7.
  173. Marslen-Wilson, W. D. (1985). Speech Shadowing and Speech Comprehension. Speech Commun. 4, 55-73. doi:10.1016/0167-6393(85)90036-6
  174. Martinez-Conde, S., Macknik, S. L., and Hubel, D. H. (2004). The Role of Fixational Eye Movements in Visual Perception. Nat. Rev. Neurosci. 5, 229-240. doi:10.1038/nrn1348
  175. May, J. G., Kennedy, R. S., Williams, M. C., Dunlap, W. P., and Brannan, J. R. (1990). Eye Movement Indices of Mental Workload. Acta psychologica 75, 75-89. doi:10.1016/0001-6918(90)90067-p
  176. McConkie, G. W., and Rayner, K. (1975). The Span of the Effective Stimulus during a Fixation in reading. Perception & Psychophysics 17, 578-586. doi:10.3758/ bf03203972
  177. McGregor, D. K., and Stern, J. A. (1996). Time on Task and Blink Effects on Saccade Duration. Ergonomics 39, 649-660. doi:10.1080/00140139608964487
  178. McKee, S. P., Levi, D. M., Schor, C. M., and Movshon, J. A. (2016). Saccadic Latency in Amblyopia. J. Vis. 16, 3. doi:10.1167/16.5.3
  179. McSorley, E., McCloy, R., and Lyne, C. (2012). The Spatial Impact of Visual Distractors on Saccade Latency. Vis. Res. 60, 61-72. doi:10.1016/ j.visres.2012.03.007
  180. Megaw, E. D. (1979). Factors Affecting Visual Inspection Accuracy. Appl. Ergon. 10, 27-32. doi:10.1016/0003-6870(79)90006-1
  181. Megaw, E. D., and Richardson, J. (1979). Eye Movements and Industrial Inspection. Appl. Ergon. 10, 145-154. doi:10.1016/0003-6870(79)90138-8
  182. Meghanathan, R. N., Nikolaev, A. R., and van Leeuwen, C. (2019). Refixation Patterns Reveal Memory-Encoding Strategies in Free Viewing. Atten Percept Psychophys 81, 2499-2516. doi:10.3758/s13414-019-01735-2
  183. Mele, M. L., and Federici, S. (2012). Gaze and Eye-Tracking Solutions for Psychological Research. Cogn. Process. 13, 261-265. doi:10.1007/s10339-012- 0499-z Mello-Thoms, C., Hardesty, L., Sumkin, J., Ganott, M., Hakim, C., Britton, C., et al. (2005). Effects of Lesion Conspicuity on Visual Search in Mammogram reading1. Acad. Radiol. 12, 830-840. doi:10.1016/j.acra.2005.03.068
  184. Menon, R. G. V., Sigurdsson, V., Larsen, N. M., Fagerstrøm, A., and Foxall, G. R. (2016). Consumer Attention to price in Social Commerce: Eye Tracking Patterns in Retail Clothing. J. Business Res. 69, 5008-5013. doi:10.1016/ j.jbusres.2016.04.072
  185. Meyer, C. H., Lasker, A. G., and Robinson, D. A. (1985). The Upper Limit of Human Smooth Pursuit Velocity. Vis. Res. 25, 561-563. doi:10.1016/0042- 6989(85)90160-9
  186. Michell, A. W., Xu, Z., Fritz, D., Lewis, S. J. G., Foltynie, T., Williams-Gray, C. H., et al. (2006). Saccadic Latency Distributions in Parkinson's Disease and the Effects of L-Dopa. Exp. Brain Res. 174, 7-18. doi:10.1007/s00221-006-0412-z
  187. Mlot, E. G., Bahmani, H., Wahl, S., and Kasneci, E. (2016). "3d Gaze Estimation Using Eye Vergence," in Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies (Rome, Italy: HEALTHINF), 125-131. doi:10.5220/0005821201250131
  188. Mohanty, A., and Sussman, T. J. (2013). Top-down Modulation of Attention by Emotion. Front. Hum. Neurosci. 7, 102. doi:10.3389/fnhum.2013.00102
  189. Morris, T. L., and Miller, J. C. (1996). Electrooculographic and Performance Indices of Fatigue during Simulated Flight. Biol. Psychol. 42, 343-360. doi:10.1016/0301-0511(95)05166-x
  190. Mostofi, N., Zhao, Z., Intoy, J., Boi, M., Victor, J. D., and Rucci, M. (2020). Spatiotemporal Content of Saccade Transients. Curr. Biol. 30, 3999-4008. doi:10.1016/j.cub.2020.07.085
  191. Motoki, K., Saito, T., and Onuma, T. (2021). Eye-tracking Research on Sensory and Consumer Science: A Review, Pitfalls and Future Directions. Food Res. Int. 145, 110389. doi:10.1016/j.foodres.2021.110389
  192. Mulder, K., Klugkist, I., van Renswoude, D., and Visser, I. (2020). Mixtures of Peaked Power Batschelet Distributions for Circular Data with Application to Saccade Directions. J. Math. Psychol. 95, 102309. doi:10.1016/ j.jmp.2019.102309
  193. Mutasim, A. K., Stuerzlinger, W., and Batmaz, A. U. (2020). "Gaze Tracking for Eye-Hand Coordination Training Systems in Virtual Reality," in Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, 1-9. doi:10.1145/3334480.3382924
  194. Nachmias, J. (1961). Determiners of the Drift of the Eye during Monocular Fixation*. J. Opt. Soc. Am. 51, 761-766. doi:10.1364/josa.51.000761
  195. Nakayama, M., Takahashi, K., and Shimizu, Y. (2002). "The Act of Task Difficulty and Eye-Movement Frequency for The'oculo-Motor Indices," in Proceedings of the 2002 symposium on Eye tracking research & applications, 37-42. doi:10.1145/507072.507080
  196. Newhall, S. M. (1932). The Control of Eyelid Movements in Visual Experiments. Am. J. Psychol. 44, 555-570. doi:10.2307/1415357
  197. Noronha, B., Dziemian, S., Zito, G. A., Konnaris, C., and Faisal, A. A. (2017). ""Wink to Grasp" -Comparing Eye, Voice & EMG Gesture Control of Grasp with Soft-Robotic Gloves," in 2017 International Conference on Rehabilitation Robotics (ICORR) (IEEE), 1043-1048. doi:10.1109/ICORR.2017.8009387IEEE Int. Conf. Rehabil. Robot2017
  198. Nyström, M., and Holmqvist, K. (2008). Semantic Override of Low-Level Features in Image Viewing-Both Initially and Overall. J. Eye Move. Res. 2. doi:10.16910/ jemr.2.2.
  199. O'Driscoll, G. A., and Callahan, B. L. (2008). Smooth Pursuit in Schizophrenia: a Meta-Analytic Review of Research since 1993. Brain Cogn. 68, 359-370.
  200. Oh, J., Han, M., Peterson, B. S., and Jeong, J. (2012). Spontaneous Eyeblinks Are Correlated with Responses during the Stroop Task. PloS one 7, e34871. doi:10.1371/journal.pone.0034871
  201. Ohtani, A. (1971). An Analysis of Eye Movements during a Visual Task. Ergonomics 14, 167-174. doi:10.1080/00140137108931235
  202. Otero-Millan, J., Troncoso, X. G., Macknik, S. L., Serrano-Pedraza, I., and Martinez-Conde, S. (2008). Saccades and Microsaccades during Visual Fixation, Exploration, and Search: Foundations for a Common Saccadic Generator. J. Vis. 8, 21. doi:10.1167/8.14.21
  203. Pan, J., Ferrer, C. C., McGuinness, K., O'Connor, N. E., Torres, J., Sayrol, E., et al. (2017). Salgan: Visual Saliency Prediction with Generative Adversarial Networks.arXiv preprint arXiv:1701.01081
  204. Parkhurst, D., Law, K., and Niebur, E. (2002). Modeling the Role of Salience in the Allocation of Overt Visual Attention. Vis. Res. 42, 107-123. doi:10.1016/s0042- 6989(01)00250-4
  205. Patel, S. S., Jankovic, J., Hood, A. J., Jeter, C. B., and Sereno, A. B. (2012). Reflexive and Volitional Saccades: Biomarkers of huntington Disease Severity and Progression. J. Neurol. Sci. 313, 35-41. doi:10.1016/j.jns.2011.09.035
  206. Pavlović, N., and Jensen, K. (2009). Eye Tracking Translation Directionality. Translation Res. projects 2, 93-109.
  207. Peterson, J., and Allison, L. W. (1931). Controls of the Eye-Wink Mechanism. J. Exp. Psychol. 14, 144-154. doi:10.1037/h0070197
  208. Peysakhovich, V., Vachon, F., and Dehais, F. (2017). The Impact of Luminance on Tonic and Phasic Pupillary Responses to Sustained Cognitive Load. Int. J. Psychophysiology 112, 40-45. doi:10.1016/j.ijpsycho.2016.12.003
  209. Phillips, M. H., and Edelman, J. A. (2008). The Dependence of Visual Scanning Performance on Search Direction and Difficulty. Vis. Res. 48, 2184-2192. doi:10.1016/j.visres.2008.06.025
  210. Ponsoda, V., Scott, D., and Findlay, J. M. (1995). A Probability Vector and Transition Matrix Analysis of Eye Movements during Visual Search. Acta psychologica 88, 167-185. doi:10.1016/0001-6918(95)94012-y
  211. Posner, M. I., Snyder, C. R., and Davidson, B. J. (1980). Attention and the Detection of Signals. J. Exp. Psychol. Gen. 109, 160-174. doi:10.1037/0096-3445.109.2.160
  212. Pumphrey, R. J. (1948). The Theory of the Fovea. J. Exp. Biol. 25, 299-312. doi:10.1242/jeb.25.3.299
  213. Ranti, C., Jones, W., Klin, A., and Shultz, S. (2020). Blink Rate Patterns Provide a Reliable Measure of Individual Engagement with Scene Content. Sci. Rep. 10, 1-10. doi:10.1038/s41598-020-64999-x
  214. Rashbass, C. (1961). The Relationship between Saccadic and Smooth Tracking Eye Movements. J. Physiol. 159, 326-338. doi:10.1113/jphysiol.1961.sp006811
  215. Ratliff, F., and Riggs, L. A. (1950). Involuntary Motions of the Eye during Monocular Fixation. J. Exp. Psychol. 40, 687-701. doi:10.1037/h0057754
  216. Rayner, K. (1979). Eye Guidance in reading: Fixation Locations within Words. Perception 8, 21-30. doi:10.1068/p080021
  217. Rayner, K. (2012). Eye Movements and Visual Cognition: Scene Perception and reading. Springer Science & Business Media.
  218. Rayner, K. (1978). Eye Movements in reading and Information Processing. Psychol. Bull. 85, 618-660. doi:10.1037/0033-2909.85.3.618
  219. Rayner, K., Pollatsek, A., Ashby, J., and Clifton, C., Jr (2012). Psychology of Reading. 1 edn. Hove, East Sussex, UK: Psychology Press.
  220. Rayner, K. (1975). The Perceptual Span and Peripheral Cues in reading. Cogn. Psychol. 7, 65-81. doi:10.1016/0010-0285(75)90005-5
  221. Recarte, M. A., and Nunes, L. M. (2000). Effects of Verbal and Spatial-Imagery Tasks on Eye Fixations while Driving. J. Exp. Psychol. Appl. 6, 31-43. doi:10.1037/1076-898x.6.1.31
  222. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). "You Only Look once: Unified, Real-Time Object Detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, 779-788. doi:10.1109/ cvpr.2016.91
  223. Reimer, J., McGinley, M. J., Liu, Y., Rodenkirch, C., Wang, Q., McCormick, D. A., et al. (2016). Pupil Fluctuations Track Rapid Changes in Adrenergic and Cholinergic Activity in Cortex. Nat. Commun. 7, 1-7. doi:10.1038/ ncomms13289
  224. Reingold, E. M., Reichle, E. D., Glaholt, M. G., and Sheridan, H. (2012). Direct Lexical Control of Eye Movements in reading: Evidence from a Survival Analysis of Fixation Durations. Cogn. Psychol. 65, 177-206. doi:10.1016/ j.cogpsych.2012.03.001
  225. Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-Cnn: Towards Real-Time Object Detection with Region Proposal Networks. arXiv preprint arXiv: 1506.01497.
  226. Renner, P., and Pfeiffer, T. (2017). "Attention Guiding Techniques Using Peripheral Vision and Eye Tracking for Feedback in Augmented-Reality- Based Assistance Systems," in 2017 IEEE Symposium on 3D User Interfaces (3DUI) (IEEE), 186-194. doi:10.1109/3dui.2017.7893338
  227. Reppert, T. R., Lempert, K. M., Glimcher, P. W., and Shadmehr, R. (2015). Modulation of Saccade Vigor during Value-Based Decision Making. J. Neurosci. 35, 15369-15378. doi:10.1523/jneurosci.2621-15.2015
  228. Rerhaye, L., Blaser, T., and Alexander, T. (2018). "Evaluation of the index of Cognitive Activity (Ica) as an Instrument to Measure Cognitive Workload under Differing Light Conditions," in Congress of the International Ergonomics Association (Springer), 350-359. doi:10.1007/978-3-319- 96059-3_38
  229. Riggs, L. A., Kelly, J. P., Manning, K. A., and Moore, R. K. (1987). Blink-related Eye Movements. Invest. Ophthalmol. Vis. Sci. 28, 334-342.
  230. Riggs, L. A., Ratliff, F., Cornsweet, J. C., and Cornsweet, T. N. (1953). The Disappearance of Steadily Fixated Visual Test Objects*. J. Opt. Soc. Am. 43, 495-501. doi:10.1364/josa.43.000495
  231. Riggs, L. A., and Ratliff, F. (1951). Visual Acuity and the normal Tremor of the Eyes. Science 114 (2949), 17-18. doi:10.1126/science.114.2949.17
  232. Robinson, D. A., Gordon, J. L., and Gordon, S. E. (1986). A Model of the Smooth Pursuit Eye Movement System. Biol. Cybern. 55, 43-57. doi:10.1007/ bf00363977
  233. Robinson, D. A. (1965). The Mechanics of Human Smooth Pursuit Eye Movement. J. Physiol. 180, 569-591. doi:10.1113/jphysiol.1965.sp007718
  234. Rottach, K. G., Zivotofsky, A. Z., Das, V. E., Averbuch-Heller, L., Discenna, A. O., Poonyathalang, A., et al. (1996). Comparison of Horizontal, Vertical and diagonal Smooth Pursuit Eye Movements in normal Human Subjects. Vis. Res. 36, 2189-2195. doi:10.1016/0042-6989(95)00302-9
  235. Rubaltelli, E., Agnoli, S., and Franchin, L. (2016). Sensitivity to Affective Information and Investors' Evaluation of Past Performance: An Eye- Tracking Study. J. Behav. Dec. Making 29, 295-306. doi:10.1002/bdm.1885
  236. Rucci, M., and Poletti, M. (2015). Control and Functions of Fixational Eye Movements. Annu. Rev. Vis. Sci. 1, 499-518. doi:10.1146/annurev-vision- 082114-035742
  237. Russell, D. (2005). Consecutive and Simultaneous Interpreting. Benjamins Translation Libr. 63, 135-164. doi:10.1075/btl.63.10rus
  238. Russo, M., Thomas, M., Thorne, D., Sing, H., Redmond, D., Rowland, L., et al. (2003). Oculomotor Impairment during Chronic Partial Sleep Deprivation. Clin. Neurophysiol. 114, 723-736. doi:10.1016/s1388- 2457(03)00008-7
  239. Rutherford, M. D., and Towns, A. M. (2008). Scan Path Differences and Similarities during Emotion Perception in Those with and without Autism Spectrum Disorders. J. Autism Dev. Disord. 38, 1371-1381. doi:10.1007/s10803-007- 0525-7
  240. Salthouse, T. A., and Ellis, C. L. (1980). Determinants of Eye-Fixation Duration. Am. J. Psychol. 93, 207-234. doi:10.2307/1422228
  241. Salvucci, D. D., and Goldberg, J. H. (2000). "Identifying Fixations and Saccades in Eye-Tracking Protocols," in Proceedings of the 2000 Symposium on Eye Tracking Research & Applications, New York, NY, USA (Palm Beach Gardens, FL: Association for Computing Machinery), ETRA '00), 71-78. doi:10.1145/355017.355028
  242. Schiller, P. H., True, S. D., and Conway, J. L. (1980). Deficits in Eye Movements Following Frontal Eye-Field and superior Colliculus Ablations. J. Neurophysiol. 44, 1175-1189. doi:10.1152/jn.1980.44.6.1175
  243. Schoonahd, J. W., Gould, J. D., and Miller, L. A. (1973). Studies of Visual Inspection. Ergonomics 16, 365-379. doi:10.1080/00140137308924528
  244. Schwalm, M., and Rosales Jubal, E. (2017). Back to Pupillometry: How Cortical Network State Fluctuations Tracked by Pupil Dynamics Could Explain Neural Signal Variability in Human Cognitive Neuroscience. Eneuro 4. doi:10.1523/ ENEURO.0293-16.2017
  245. Schwiedrzik, C. M., and Sudmann, S. S. (2020). Pupil Diameter Tracks Statistical Structure in the Environment to Increase Visual Sensitivity. J. Neurosci. 40, 4565-4575. doi:10.1523/jneurosci.0216-20.2020
  246. Seeber, K. G., and Kerzel, D. (2012). Cognitive Load in Simultaneous Interpreting: Model Meets Data. Int. J. Bilingualism 16, 228-242. doi:10.1177/ 1367006911402982
  247. Semmelmann, K., and Weigelt, S. (2018). Online Webcam-Based Eye Tracking in Cognitive Science: A First Look. Behav. Res. 50, 451-465. doi:10.3758/s13428- 017-0913-7
  248. Sewell, W., and Komogortsev, O. (2010). "Real-time Eye Gaze Tracking with an Unmodified Commodity Webcam Employing a Neural Network," in CHI'10 Extended Abstracts on Human Factors in Computing Systems, 3739-3744. doi:10.1145/1753846.1754048
  249. Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell Syst. Tech. J. 27, 379-423. doi:10.1002/j.1538-7305.1948.tb01338.x
  250. Shiferaw, B., Downey, L., and Crewther, D. (2019). A Review of Gaze Entropy as a Measure of Visual Scanning Efficiency. Neurosci. Biobehavioral Rev. 96, 353-366. doi:10.1016/j.neubiorev.2018.12.007
  251. Shin, Y. S., Chang, W.-d., Park, J., Im, C.-H., Lee, S. I., Kim, I. Y., et al. (2015). Correlation between Inter-blink Interval and Episodic Encoding during Movie Watching. PloS one 10, e0141242. doi:10.1371/journal.pone.0141242
  252. Simons, D. J., and Chabris, C. F. (1999). Gorillas in Our Midst: Sustained Inattentional Blindness for Dynamic Events. perception 28, 1059-1074. doi:10.1068/p2952
  253. Snider, J., Spence, R. J., Engler, A.-M., Moran, R., Hacker, S., Chukoskie, L., et al. (2021). Distraction "Hangover": Characterization of the Delayed Return to Baseline Driving Risk after Distracting Behaviors. Thousand Oaks, CA: Human factors, 00187208211012218.
  254. Spering, M., and Gegenfurtner, K. R. (2007). Contextual Effects on Smooth-Pursuit Eye Movements. J. Neurophysiol. 97, 1353-1367. doi:10.1152/jn.01087.2006
  255. Stapel, J., El Hassnaoui, M., and Happee, R. (2020). Measuring Driver Perception: Combining Eye-Tracking and Automated Road Scene Perception. Thousand Oaks, CA: Human factors, 0018720820959958.
  256. Staub, A., and Benatar, A. (2013). Individual Differences in Fixation Duration Distributions in reading. Psychon. Bull. Rev. 20, 1304-1311. doi:10.3758/ s13423-013-0444-x
  257. Steinman, R. M., Haddad, G. M., Skavenski, A. A., and Wyman, D. (1973). Miniature Eye Movement. Science 181, 810-819. doi:10.1126/ science.181.4102.810
  258. Stern, J. A., Walrath, L. C., and Goldstein, R. (1984). The Endogenous Eyeblink. Psychophysiology 21, 22-33. doi:10.1111/j.1469-8986.1984.tb02312.x
  259. Stevenson, S. B., Volkmann, F. C., Kelly, J. P., and Riggs, L. A. (1986). Dependence of Visual Suppression on the Amplitudes of Saccades and Blinks. Vis. Res. 26, 1815-1824. doi:10.1016/0042-6989(86)90133-1
  260. Sun, F., Tauchi, P., and Stark, L. (1983). Dynamic Pupillary Response Controlled by the Pupil Size Effect. Exp. Neurol. 82, 313-324. doi:10.1016/0014-4886(83) 90404-1
  261. Sweller, J. (2011). "Cognitive Load Theory," in Psychology of Learning and Motivation (Elsevier), 55, 37-76. doi:10.1016/b978-0-12-387691-1.00002-8
  262. Takeda, K., and Funahashi, S. (2002). Prefrontal Task-Related Activity Representing Visual Cue Location or Saccade Direction in Spatial Working Memory Tasks. J. Neurophysiol. 87, 567-588. doi:10.1152/jn.00249.2001
  263. Termsarasab, P., Thammongkolchai, T., Rucker, J. C., and Frucht, S. J. (2015). The Diagnostic Value of Saccades in Movement Disorder Patients: a Practical Guide and Review. J. Clin. Mov Disord. 2, 14-10. doi:10.1186/s40734-015-0025-4
  264. Tullis, T., and Albert, B. (2013). Measuring the User Experience. Elsevier, 163-186. chap. Behavioral and physiological metrics. doi:10.1016/b978-0-12-415781- 1.00007-8Behavioral and Physiological Metrics
  265. Valls-Sole, J. (2019). Spontaneous, Voluntary, and Reflex Blinking in Clinical Practice. J. Clin. Neurophysiol. 36, 415-421. doi:10.1097/ wnp.0000000000000561
  266. Van der Stigchel, S., Rommelse, N. N. J., Deijen, J. B., Geldof, C. J. A., Witlox, J., Oosterlaan, J., et al. (2007). Oculomotor Capture in Adhd. Cogn. Neuropsychol. 24, 535-549. doi:10.1080/02643290701523546
  267. Van Orden, K. F., Jung, T.-P., and Makeig, S. (2000). Combined Eye Activity Measures Accurately Estimate Changes in Sustained Visual Task Performance. Biol. Psychol. 52, 221-240. doi:10.1016/s0301-0511(99)00043-5
  268. van Tricht, M. J., Nieman, D. H., Bour, L. J., Boerée, T., Koelman, J. H. T. M., de Haan, L., et al. (2010). Increased Saccadic Rate during Smooth Pursuit Eye Movements in Patients at Ultra High Risk for Developing a Psychosis. Brain Cogn. 73, 215-221. doi:10.1016/j.bandc.2010.05.005
  269. van Zoest, W., Donk, M., and Theeuwes, J. (2004). The Role of Stimulus-Driven and Goal-Driven Control in Saccadic Visual Selection. J. Exp. Psychol. Hum. perception Perform. 30, 746-759. doi:10.1037/0096-1523.30.4.749
  270. Vandeberg, L., Bouwmeester, S., Bocanegra, B. R., and Zwaan, R. A. (2013). Detecting Cognitive Interactions through Eye Movement Transitions. J. Mem. Lang. 69, 445-460. doi:10.1016/j.jml.2013.05.006
  271. Velichkovsky, B. B., Khromov, N., Korotin, A., Burnaev, E., and Somov, A. (2019). "Visual Fixations Duration as an Indicator of Skill Level in Esports," in IFIP Conference on Human-Computer Interaction (Springer), 397-405. doi:10.1007/978-3-030-29381-9_25
  272. Velichkovsky, B. M., Dornhoefer, S. M., Pannasch, S., and Unema, P. J. (2000). "Visual Fixations and Level of Attentional Processing," in Proceedings of the 2000 symposium on eye tracking research & applications, 79-85. doi:10.1145/ 355017.355029
  273. Venjakob, A., Marnitz, T., Mahler, J., Sechelmann, S., and Roetting, M. (2012). "Radiologists' Eye Gaze when reading Cranial Ct Images," in Medical imaging 2012: Image perception, observer performance, and technology assessment (San Diego: International Society for Optics and Photonics), 8318, 83180B. doi:10.1117/12.913611
  274. Wade, M. G., and Jones, G. (1997). The Role of Vision and Spatial Orientation in the Maintenance of Posture. Phys. Ther. 77, 619-628. doi:10.1093/ptj/77.6.619
  275. Wainstein, G., Rojas-Líbano, D., Crossley, N. A., Carrasco, X., Aboitiz, F., and Ossandón, T. (2017). Pupil Size Tracks Attentional Performance in Attention- Deficit/hyperactivity Disorder. Sci. Rep. 7, 8228-8229. doi:10.1038/s41598-017- 08246-w Walker, R., McSorley, E., and Haggard, P. (2006). The Control of Saccade Trajectories: Direction of Curvature Depends on Prior Knowledge of Target Location and Saccade Latency. Perception & Psychophysics 68, 129-138. doi:10.3758/bf03193663
  276. Walker-Smith, G. J., Gale, A. G., and Findlay, J. M. (1977). Eye Movement Strategies Involved in Face Perception. Perception 6, 313-326. doi:10.1068/ p060313
  277. Wang, C.-A., Brien, D. C., and Munoz, D. P. (2015). Pupil Size Reveals Preparatory Processes in the Generation of Pro-saccades and Anti-saccades. Eur. J. Neurosci. 41, 1102-1110. doi:10.1111/ejn.12883
  278. Wang, R. I., Pelfrey, B., Duchowski, A. T., and House, D. H. (2012). "Online Gaze Disparity via Bioncular Eye Tracking on Stereoscopic Displays," in 2012 Second International Conference on 3D Imaging, Modeling, Processing (Visualization & TransmissionIEEE), 184-191. doi:10.1109/ 3dimpvt.2012.37
  279. Wang, Y., Lu, S., and Harter, D. (2021). Multi-sensor Eye-Tracking Systems and Tools for Capturing Student Attention and Understanding Engagement in Learning: A Review. IEEE Sensors J. 21, 22402-22413. doi:10.1109/ jsen.2021.3105706
  280. Warren, D. E., Thurtell, M. J., Carroll, J. N., and Wall, M. (2013). Perimetric Evaluation of Saccadic Latency, Saccadic Accuracy, and Visual Threshold for Peripheral Visual Stimuli in Young Compared with Older Adults. Invest. Ophthalmol. Vis. Sci. 54, 5778-5787. doi:10.1167/iovs.13-12032
  281. Wass, S. V., de Barbaro, K., and Clackson, K. (2015). Tonic and Phasic Co-variation of Peripheral Arousal Indices in Infants. Biol. Psychol. 111, 26-39. doi:10.1016/ j.biopsycho.2015.08.006
  282. Watson, A. B., and Yellott, J. I. (2012). A Unified Formula for Light-Adapted Pupil Size. J. Vis. 12, 12. doi:10.1167/12.10.12
  283. Wedel, M., and Pieters, R. (2008). A Review of Eye-Tracking Research in Marketing. Rev. marketing Res., 123-147. doi:10.4324/9781351550932-5
  284. Widdel, H. (1984). "Operational Problems in Analysing Eye Movements," in Advances in Psychology (Elsevier), 22, 21-29. doi:10.1016/s0166-4115(08) 61814-2
  285. Wierda, S. M., van Rijn, H., Taatgen, N. A., and Martens, S. (2012). Pupil Dilation Deconvolution Reveals the Dynamics of Attention at High Temporal Resolution. Proc. Natl. Acad. Sci. 109, 8456-8460. doi:10.1073/ pnas.1201858109
  286. Xu-Wilson, M., Zee, D. S., and Shadmehr, R. (2009). The Intrinsic Value of Visual Information Affects Saccade Velocities. Exp. Brain Res. 196, 475-481. doi:10.1007/s00221-009-1879-1
  287. Yarbus, A. L. (1967). Eye Movements and Vision. Springer.
  288. Young, L. R. (1971). "Pursuit Eye Tracking Movements," in The Control of Eye Movements (New York: Academic Press), 429-443. doi:10.1016/b978-0-12- 071050-8.50019-7
  289. Young, L. R., and Sheena, D. (1975). Survey of Eye Movement Recording Methods. Behav. Res. Methods Instrumentation 7, 397-429. doi:10.3758/bf03201553
  290. Yu, G., Xu, B., Zhao, Y., Zhang, B., Yang, M., Kan, J. Y. Y., et al. (2016). Microsaccade Direction Reflects the Economic Value of Potential Saccade Goals and Predicts Saccade Choice. J. Neurophysiol. 115, 741-751. doi:10.1152/jn.00987.2015
  291. Zackon, D. H., and Sharpe, J. A. (1987). Smooth Pursuit in senescence:Effects of Target Acceleration and Velocity. Acta oto-laryngologica 104, 290-297. doi:10.3109/00016488709107331
  292. Zelinsky, G. J., and Sheinberg, D. L. (1997). Eye Movements during Parallel-Serial Visual Search. J. Exp. Psychol. Hum. perception Perform. 23, 244-262. doi:10.1037/0096-1523.23.1.244
  293. Zénon, A. (2017). Time-domain Analysis for Extracting Fast-Paced Pupil Responses. Sci. Rep. 7, 1-10. doi:10.1038/srep41484
  294. Zhang, X., Yuan, S.-M., Chen, M.-D., and Liu, X. (2018). A Complete System for Analysis of Video Lecture Based on Eye Tracking. IEEE Access 6, 49056-49066. doi:10.1109/access.2018.2865754
  295. Zuber, B. L., Stark, L., and Cook, G. (1965). Microsaccades and the Velocity- Amplitude Relationship for Saccadic Eye Movements. Science 150, 1459-1460. doi:10.1126/science.150.3702.1459