Evaluating Differences of Erosion Patterns in Natural and Anthropogenic Basins through Scenario Testing: A Case Study of the Claise, France and Nahr Ibrahim, Lebanon (original) (raw)

Spatial Estimation of Soil Erosion Risk Using RUSLE/GIS Techniques and Practices Conservation Suggested for Reducing Soil Erosion in Wadi Mina Catchment (Northwest, Algeria)

Soil Erosion - Current Challenges and Future Perspectives in a Changing World, 2021

To meet the pressing water needs in Algeria, the state has put in place a strategy consisting of the creation of hydraulic infrastructure for the mobilization of surface water resources. In fact, 74 dams are currently in operation; these structures are silting up at a rapid pace, generating an estimated annual loss of 45 million m3. Sidi Mhamed Benaouda dam located in the Oranian hill, with a water capacity of respectively 241 million m3 plays a crucial economic role in this region. The protection of this dam against erosive processes is a pressing economic goal. To do this, the RUSLE/GIS approach was used to map the erosive hazard. The results obtained in the Mina catchment, following a subdivision of 1315 homogeneous land parcels, show a total annual loss of 60 million tons/year with an average loss of 11.2 t/ha/year. About 50% of the catchment area was predicted to have very low to low erosion risk, with soil loss between 0 and 7.4 t/ha/year. Erosion risk is moderate over 13.9% o...

Soil Erosion Estimates in Arid Region: A Case Study of the Koutine Catchment, Southeastern Tunisia

Applied Sciences, 2021

Soil erosion remains one of the principal environmental problems in arid regions. This study aims to assess and quantify the variability of soil erosion in the Koutine catchment using the RUSLE (Revised Universal Soil Loss Equation) model. The Koutine catchment is located in an arid area in southeastern Tunisia and is characterized by an annual mean precipitation of less than 200 mm. The model was used to examine the influence of topography, extreme rainstorm intensity and soil texture on soil loss. The data used for model validation were obtained from field measurements by monitoring deposited sediment in settlement basins of 25 cisterns (a traditional water harvesting and storage technique) over 4 years, from 2015 to 2018. Results showed that slope is the most controlling factor of soil loss. The average annual soil loss in monitoring sites varies between 0.01 and 12.5 t/ha/y. The storm events inducing the largest soil losses occurred in the upstream part of the Koutine catchment ...

Vulnerability of soils in the watershed of Wadi El Hammam to water erosion (Algeria)

Journal of Water and Land Development, 2015

Located in the north west of Algeria, the watershed of Wadi El Hammam is threatened by water erosion that has resulted the silting of reservoirs at cascade: Ouizert, Bouhanifia and Fergoug. The objective of this study is to develop a methodology using remote sensing and geographical information systems (GIS) to map the zones presenting sensibility of water erosion in this watershed. It aims to produce a sensibility map that can be used as a reference document for planners. The methodology presented consists of three factors that control erosion: the slope, the friability material and the land use, which were integrated into a GIS. The derived erosion sensibility map shows three areas of vulnerability to water erosion: low, medium and high. The area of high vulnerability corresponds to sub-basin of Fergoug.

Assessment of the effects of vegetation on soil erosion risk by water: a case of study of the Batta watershed in Tunisia

Environmental Earth Sciences

Soil erosion by water is a serious environmental problem which affects particularly the agriculture of developing countries. Due to specific factors, such as high rainfall intensity, steep slopes and vegetation scarcity, Tunisia is prone to soil erosion. Taking this into account, the main objective of this study was to estimate the soil erosion risk in the Batta watershed in Tunisia using qualitative and quantitative erosion model with remote sensing data and geographic information system (GIS). Moreover, a developed method that deals with evaluating the impact of vegetation on soil erosion by water is also applied. This method used multi-temporal satellite images with seasonal variability and the transformed soil adjusted vegetation index (TSAVI) which is appropriate in arid and semi-arid areas. For both erosion models, the results show that a large area of the Batta watershed is seriously affected by erosion. This potentially high risk is due especially to severe slopes, poor vegetation coverage and high soil erodibility in this watershed. Furthermore, the use of multi-temporal satellite images and vegetation index show that the effect of vegetation is a significant factor to protect the soil against erosion. The risk is especially serious in the summer season, but it decreases with the growth of vegetation cover in spring. Erosion model, combined with a GIS and remote sensing, is an adequate method to evaluate the soil erosion risk by water. The findings can be used by decision makers as a guideline to plan appropriate strategies for soil and water conservation practices.