Assessing Radiation-Associated Mutational Risk to the Germline: Repetitive DNA Sequences as Mutational Targets and Biomarkers (original) (raw)

Monitoring of radiation-induced germline mutation in humans

Swiss medical weekly, 2003

Estimating the genetic hazards of radiation and other mutagens in humans depends on extrapolation from experimental systems. Recent data have shown that minisatellite loci provide a useful and sensitive experimental approach for monitoring radiation-induced mutation in humans. This review describes the progress made in validating this approach and presents the results of recent publications on the analysis of minisatellite mutation rates in the irradiated families.

The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline

The ability to predict the genetic consequences of human exposure to ionizing radiation has been a long-standing goal of human genetics in the past 50 years. Here we present the results of an unbiased, comprehensive genome-wide survey of the range of germline mutations induced in laboratory mice after parental exposure to ionizing radiation and show irradiation markedly alters the frequency and spectrum of de novo mutations. Here we show that the frequency of de novo copy number variants (CNVs) and insertion/deletion events (indels) is significantly elevated in offspring of exposed fathers. We also show that the spectrum of induced de novo single-nucleotide variants (SNVs) is strikingly different; with clustered mutations being significantly over-represented in the offspring of irradiated males. Our study highlights the specific classes of radiation-induced DNA lesions that evade repair and result in germline mutation and paves the way for similarly comprehensive characterizations of other germline mutagens.

Multisite de novo mutations in human offspring after paternal exposure to ionizing radiation

Scientific reports, 2018

A genome-wide evaluation of the effects of ionizing radiation on mutation induction in the mouse germline has identified multisite de novo mutations (MSDNs) as marker for previous exposure. Here we present the results of a small pilot study of whole genome sequencing in offspring of soldiers who served in radar units on weapon systems that were emitting high-frequency radiation. We found cases of exceptionally high MSDN rates as well as an increased mean in our cohort: While a MSDN mutation is detected in average in 1 out of 5 offspring of unexposed controls, we observed 12 MSDNs in altogether 18 offspring, including a family with 6 MSDNs in 3 offspring. Moreover, we found two translocations, also resulting from neighboring mutations. Our findings indicate that MSDNs might be suited in principle for the assessment of DNA damage from ionizing radiation also in humans. However, as exact person-related dose values in risk groups are usually not available, the interpretation of MSDNs in...

Gamma radiation-induced heritable mutations at repetitive DNA loci in out-bred mice

Mutation Research Fundamental and Molecular Mechanisms of Mutagenesis, 2005

Recent studies have shown that expanded-simple-tandem-repeat (ESTR) DNA loci are efficient genetic markers for detecting radiation-induced germline mutations in mice. Dose responses following irradiation, however, have only been characterized in a small number of inbred mouse strains, and no studies have applied ESTRs to examine potential modifiers of radiation risk, such as adaptive response. We gamma-irradiated groups of male out-bred Swiss-Webster mice with single acute doses of 0.5 and 1.0 Gy, and compared germline mutation rates at ESTR loci to a sham-irradiated control. To test for evidence of adaptive response we treated a third group with a total dose of 1.1 Gy that was fractionated into a 0.1 Gy adapting dose, followed by a challenge dose of 1.0 Gy 24 h later. Paternal mutation rates were significantly elevated above the control in the 0.5 Gy (2.8-fold) and 1.0 Gy (3.0-fold) groups, but were similar to each other despite the difference in radiation dose. The doubling dose for paternal mutation induction was 0.26 Gy (95% CI = 0.14-0.51 Gy). Males adapted with a 0.1 Gy dose prior to a 1.0 Gy challenge dose had mutation rates that were not significantly elevated above the control, and were 43% reduced compared to those receiving single doses. We conclude that pre-meiotic male germ cells in out-bred Swiss-Webster mice are sensitive to ESTR mutations induced by acute doses of ionizing radiation, but mutation induction may become saturated at a lower dose than in some strains of inbred mice. Reduced mutation rates in the adapted group provide intriguing evidence for suppression of ESTR mutations in the male germline through adaptive response. Repetitive DNA markers may be useful tools for exploration of biological factors affecting the probability of heritable mutations caused by low-dose ionizing radiation exposure. The biological significance of ESTR mutations in terms of radiation risk assessment, however, is still undetermined.

Characterization of unstable microsatellites in mice: No evidence for germline mutation induction following gamma-radiation exposure

Environmental and Molecular Mutagenesis, 2012

Large tandem repeat DNA loci such as expanded simple tandem repeats and minisatellites are efficient markers for detecting germline mutations; however, mutation detection using these loci can be imprecise and difficult to standardize across labs. Short-tandem repeats, such as microsatellites, offer more precise and high-throughput mutation detection, but germline mutation induction at these loci has not yet been studied in model organisms such as mice. In this study, we used microsatellite enrichment and large-scale DNA sequencing of several closely related inbred mouse lines to identify a panel of 19 polymorphic microsatellites with potentially high spontaneous mutation frequencies. We used this panel and four additional loci from other sources to quantify spontaneous mutation frequency in pedigrees of outbred Swiss-Webster mice. In addition, we also examined mutation induction in families in which sires were treated with acute doses of either 0.5 Gy or 1.0 Gy gamma-irradiation to spermatogonial stem cells. Per locus mutation frequencies ranged from 0 to 5.03 3 10 23 . Considering only the 11 loci with mutations, the mutation frequencies were: control 2.78 3 10 23 , 0.5 Gy 4.09 3 10 23 , and 1.0 Gy 1.82 3 10 23 . There were no statistically significant changes in mutation frequencies among treatment groups. Our study provides the first direct quantification of microsatellite mutation frequency in the mouse germline, but shows no evidence for mutation induction at pre-meiotic male germ cells following acute gamma-irradiation. Further work using the panel is needed to examine mutation induction at different doses of radiation, exposure durations, and stages during spermatogenesis. Environ. Mol. Mutagen. 00:000-000, 2012. V V C 2012 Wiley Periodicals, Inc.

Radiobiology and Reproduction—What Can We Learn from Mammalian Females?

Genes, 2012

Ionizing radiation damages DNA and induces mutations as well as chromosomal reorganizations. Although radiotherapy increases survival among cancer patients, this treatment does not come without secondary effects, among which the most problematic is gonadal dysfunction, especially in women. Even more, if radio-induced DNA damage occurs in germ cells during spermatogenesis and/or oogenesis, they can produce chromosomal reorganizations associated with meiosis malfunction, abortions, as well as hereditary effects. However, most of our current knowledge of ionizing radiation genotoxic effects is derived from in vitro studies performed in somatic cells and there are only some experimental data that shed light on how germ cells work when affected by DNA alterations produced by ionizing radiation. In addition, these few data are often related to mammalian males, making it difficult to extrapolate the results to females. Here, we review the current knowledge of radiobiology and reproduction, paying attention to mammalian females. In order to do that, we will navigate across the female meiotic/reproductive cycle/life taking into account the radiation-induced genotoxic effects analysis and animal models used, published in recent decades.

Deviation from Mendelian transmission of autosomal SNPs can be used to estimate germline mutations in humans exposed to ionizing radiation

Plos One, 2020

We aimed to estimate the rate of germline mutations in the offspring of individuals accidentally exposed to Cesium-137 ionizing radiation. The study included two distinct groups: one of cases, consisting of males and females accidentally exposed to low doses of ionizing radiation of Cs 137 , and a control group of non-exposed participants. The cases included 37 people representing 11 families and 15 children conceived after the accident. Exposed families incurred radiation absorbed doses in the range of 0.2 to 0.5 Gray. The control group included 15 families and 15 children also conceived after 1987 in Goiâ nia with no history of radiation exposure. DNA samples from peripheral blood were analyzed with the Affymetrix GeneChip ® CytoScanHD™ to estimate point mutations in autosomal SNPs. A set of scripts previously developed was used to detect de novo mutations by comparing parent and offspring genotypes at the level of each SNP marker. Overall numbers of observed Mendelian deviations were statistically significant between the exposed and control groups. Our retrospective transgenerational DNA analysis showed a 44.0% increase in the burden of SNP mutations in the offspring of cases when compared to controls, based on the average of MF MD for the two groups. Parent-of-origin and type of nucleotide substitution were also inferred. This proved useful in a retrospective estimation of the rate of de novo germline mutations in a human population accidentally exposed to low doses of radiation from Cesium-137. Our results suggested that

Stage specificity, dose response, and doubling dose for mouse minisatellite germ-line mutation induced by acute radiation

Proceedings of the National Academy of Sciences, 1998

Germ-line mutation induction at mouse minisatellite loci by acute irradiation with x-rays was studied at premeiotic and postmeiotic stages of spermatogenesis. An elevated paternal mutation rate was found after irradiation of premeiotic spermatogonia and stem cells, whereas the frequency of minisatellite mutation after postmeiotic irradiation of spermatids was similar to that in control litters. In contrast, paternal irradiation did not affect the maternal mutation rate. A linear dose-response curve for paternal mutation induced at premeiotic stages was found, with a doubling dose of 0.33 Gy, a value close to those obtained in mice after acute spermatogonia irradiation using other systems for mutation detection. High frequencies of spontaneous and induced mutations at minisatellite loci allow mutation induction to be evaluated at low doses of exposure in very small population samples, which currently makes minisatellite DNA the most powerful tool for monitoring radiation-induced germ-line mutation.

Mechanisms and implications of genomic instability and other delayed effects of ionizing radiation exposure

Mutagenesis, 1998

Recently there has been considerable interest in various delayed effects of radiation. These have the common property of showing a high and, in some instances, nonclonal transmission of 'damage' to distant progeny which derive from apparently normal surviving cells and their descendants. This means that conventional analysis and interpretation of long-term radiation damage in terms of mutations induced in DNA at the time of radiation exposure may be incorrect Several reviews of this area have appeared in recent years which have described the historical development of this field. The aim of this commentary is to highlight areas of discussion, particularly concerning links between the various end-points, and to discuss some of the possible implications of genomic instability for radiation carcinogenesis in general and for the setting of radiation protection action limits in particular.

Field Study of the Possible Effect of Parental Irradiation on the Germline of Children Born to Cleanup Workers and Evacuees of the Chornobyl Nuclear Accident

American Journal of Epidemiology, 2020

Although transgenerational effects of exposure to ionizing radiation have long been a concern, human research to date has been confined to studies of disease phenotypes in groups exposed to high doses and high dose rates, such as the Japanese atomic bomb survivors. Transgenerational effects of parental irradiation can be addressed using powerful new genomic technologies. In collaboration with the Ukrainian National Research Center for Radiation Medicine, the US National Cancer Institute, in 2014–2018, initiated a genomic alterations study among children born in selected regions of Ukraine to cleanup workers and/or evacuees exposed to low–dose-rate radiation after the 1986 Chornobyl (Chernobyl) nuclear accident. To investigate whether parental radiation exposure is associated with germline mutations and genomic alterations in the offspring, we are collecting biospecimens from father-mother-offspring constellations to study de novo mutations, minisatellite mutations, copy-number chang...