Concept and Analysis of Information Spaces to improve Prediction-Based Compression (original) (raw)
Related papers
Evaluating Lossy Data Compression on Climate Simulation Data within a Large Ensemble
Geoscientific Model Development Discussions, 2016
High-resolution Earth system model simulations generate enormous data volumes, and retaining the data from these simulations often strains institutional storage resources. Further, these exceedingly large storage requirements negatively impact science objectives, for example, by forcing reductions in data output frequency, simulation length, or ensemble size. To lessen data volumes from the Community Earth System Model (CESM), we advocate the use of lossy data compression techniques. While lossy data compression does not exactly preserve the original data (as lossless compression does), lossy techniques have an advantage in terms of smaller storage requirements. To preserve the integrity of the scientific simulation data, the effects of lossy data compression on the original data should, at a minimum, not be statistically distinguishable from the natural variability of the climate system, and previous preliminary work with data from CESM has shown this goal to be attainable. However, to ultimately convince climate scientists that it is acceptable to use lossy data compression, we provide climate scientists with access to publicly available climate data that have undergone lossy data compression. In particular, we report on the results of a lossy data compression experiment with output from the CESM Large Ensemble (CESM-LE) Community Project, in which we challenge climate scientists to examine features of the data relevant to their interests, and attempt to identify which of the ensemble members have been compressed and reconstructed. We find that while detecting distinguishing features is certainly possible, the compression effects noticeable in these features are often unimportant or disappear in post-processing analyses. In addition, we perform several analyses that directly compare the original data to the reconstructed data to investigate the preservation, or lack thereof, of specific features critical to climate science. Overall, we conclude that applying lossy data compression to climate simulation data is both advantageous in terms of data reduction and generally acceptable in terms of effects on scientific results.
A Statistical Analysis of Compressed Climate Model Data
2018
The data storage burden resulting from large climate model simulations continues to grow. While lossy data compression methods can alleviate this burden, they introduce the possibility that key climate variables could be altered to the point of affecting scientific conclusions. Therefore, developing a detailed understanding of how compressed model output differs from the original is important. Here, we evaluate the effects of two leading compression algorithms, SZ and ZFP, on daily surface temperature and precipitation rate data from a popular climate model. While both algorithms show promising fidelity with the original output, detectable artifacts are introduced even at relatively low error tolerances. This study highlights the need for evaluation methods that are sensitive to errors at different spatiotemporal scales and specific to the particular climate variable of interest, with the ultimate goal to improve lossy compression collaboratively with the algorithm development teams.
Evaluating Lossy Compression on Climate Data
Lecture Notes in Computer Science, 2013
While the amount of data used by today's high-performance computing (HPC) codes is huge, HPC users have not broadly adopted data compression techniques, apparently because of a fear that compression will either unacceptably degrade data quality or that compression will be too slow to be worth the effort. In this paper, we examine the effects of three lossy compression methods (GRIB2 encoding, GRIB2 using JPEG 2000 and LZMA, and the commercial Samplify APAX algorithm) on decompressed data quality, compression ratio, and processing time. A careful evaluation of selected lossy and lossless compression methods is conducted, assessing their influence on data quality, storage requirements and performance. The differences between input and decoded datasets are described and compared for the GRIB2 and APAX compression methods. Performance is measured using the compressed file sizes and the time spent on compression and decompression. Test data consists both of 9 synthetic data exposing compression behavior and 123 climate variables output from a climate model. The benefits of lossy compression for HPC systems are described and are related to our findings on data quality.
Efficient Lossy Compression for Scientific Data Based on Pointwise Relative Error Bound
IEEE Transactions on Parallel and Distributed Systems, 2019
An effective data compressor is becoming increasingly critical to today's scientific research, and many lossy compressors are developed in the context of absolute error bounds. Based on physical/chemical definitions of simulation fields or multiresolution demand, however, many scientific applications need to compress the data with a pointwise relative error bound (i.e., the smaller the data value, the smaller the compression error to tolerate). To this end, we propose two optimized lossy compression strategies under a state-of-the-art three-staged compression framework (prediction + quantization + entropy-encoding). The first strategy (called blockbased strategy) splits the data set into many small blocks and computes an absolute error bound for each block, so it is particularly suitable for the data with relatively high consecutiveness in space. The second strategy (called multi-threshold-based strategy) splits the whole value range into multiple groups with exponentially increasing thresholds and performs the compression in each group separately, which is particularly suitable for the data with a relatively large value range and spiky value changes. We implement the two strategies rigorously and evaluate them comprehensively by using two scientific applications which both require lossy compression with point-wise relative error bound. Experiments show that the two strategies exhibit the best compression qualities on different types of data sets respectively. The compression ratio of our lossy compressor is higher than that of other state-of-the-art compressors by 17.2-618 percent on the climate simulation data and 30-210 percent on the N-body simulation data, with the same relative error bound and without degradation of the overall visualization effect of the entire data.
Data Encoding in Lossless Prediction-Based Compression Algorithms
2019 15th International Conference on eScience (eScience)
The increase in compute power and development of sophisticated simulation models with higher resolution output triggers a need for compression algorithms for scientific data. Several compression algorithms are currently under development. Most of these algorithms are using prediction-based compression algorithms, where each value is predicted and the residual between the prediction and true value is saved on disk. Currently there are two established forms of residual calculation: Exclusive-or and numerical difference. In this paper we will summarize both techniques and show their strengths and weaknesses. We will show that shifting the prediction and true value to a binary number with certain properties results in a better compression factor with minimal additional computational costs. This gain in compression factor allows for the usage of less sophisticated prediction algorithms to achieve a higher throughput during compression and decompression. In addition, we will introduce a new encoding scheme to achieve an 9% increase in compression factor on average compared to the current state-of-the-art.
Black-Box Statistical Prediction of Lossy Compression Ratios for Scientific Data
arXiv (Cornell University), 2023
Lossy compressors are increasingly adopted in scientific research, tackling volumes of data from experiments or parallel numerical simulations and facilitating data storage and movement. In contrast with the notion of entropy in lossless compression, no theoretical or data-based quantification of lossy compressibility exists for scientific data. Users rely on trial and error to assess lossy compression performance. As a strong data-driven effort toward quantifying lossy compressibility of scientific datasets, we provide a statistical framework to predict compression ratios of lossy compressors. Our method is a two-step framework where (i) compressor-agnostic predictors are computed and (ii) statistical prediction models relying on these predictors are trained on observed compression ratios. Proposed predictors exploit spatial correlations and notions of entropy and lossyness via the quantized entropy. We study 8+ compressors on 6 scientific datasets and achieve a median percentage prediction error less than 12%, which is substantially smaller than that of other methods while achieving at least a 8.8× speedup for searching for a specific compression ratio and 7.8× speedup for determining the best compressor out of a collection.
Revealing relationships among relevant climate variables with information theory
2005
A primary objective of the NASA Earth-Sun Exploration Technology Office is to understand the observed Earth climate variability, thus enabling the determination and prediction of the climate's response to both natural and human-induced forcing. We are currently developing a suite of computational tools that will allow researchers to calculate, from data, a variety of informationtheoretic quantities such as mutual information, which can be used to identify relationships among climate variables, and transfer entropy, which indicates the possibility of causal interactions. Our tools estimate these quantities along with their associated error bars, the latter of which is critical for describing the degree of uncertainty in the estimates. This work is based upon optimal binning techniques that we have developed for piecewise-constant, histogram-style models of the underlying density functions. Two useful side benefits have already been discovered. The first allows a researcher to determine whether there exist sufficient data to estimate the underlying probability density. The second permits one to determine an acceptable degree of round-off when compressing data for efficient transfer and storage. We also demonstrate how mutual information and transfer entropy can be applied so as to allow researchers not only to identify relations among climate variables, but also to characterize and quantify their possible causal interactions.
Universal data compression and linear prediction
Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225), 1998
The relationship between prediction and data compression can be extended to universal prediction schemes and universal data compression. Recent w ork shows that minimizing the sequential squared prediction error for individual sequences can be achieved using the same strategies which minimize the sequential codelength for data compression of individual sequences. De ning a probability" as an exponential function of sequential loss, results from universal data compression can be used to develop universal linear prediction algorithms. Speci cally, w e present an algorithm for linear prediction of individual sequences which i s t wice-universal, over parameters and model orders.
Time-universal data compression and prediction
2019 IEEE International Symposium on Information Theory (ISIT), 2019
Suppose there is a large file which should be transmitted (or stored) and there are several (say, m) admissible data-compressors. It seems natural to try all the compressors and then choose the best, i.e. the one that gives the shortest compressed file. Then transfer (or store) the index number of the best compressor (it requires log m bits) and the compressed file. The only problem is the time, which essentially increases due to the need to compress the file m times (in order to find the best compressor). We propose a method that encodes the file with the optimal compressor, but uses a relatively small additional time: the ratio of this extra time and the total time of calculation can be limited by an arbitrary positive constant. Generally speaking, in many situations it may be necessary find the best data compressor out of a given set, which is often done by comparing them empirically. One of the goals of this work is to turn such a selection process into a part of the data compression method, automating and optimizing it. A similar result is obtained for the related problem of timeseries forecasting.