Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion (original) (raw)
Related papers
The Journal of Physiology, 2008
Descending supraspinal inputs exert powerful influences on spinal reflex pathways in the legs. Removing these inputs by completely transecting the spinal cord changes the state (i.e. the configuration of the spinal circuitry) of the locomotor network and undoubtedly generates a reorganization of reflex pathways. To study changes in reflex pathways after a complete spinalization, we recorded spinal reflexes during locomotion before and after a complete transection of the spinal cord at the 13th thoracic segment in cats. We chronically implanted electrodes in three cats, to record electromyography (EMG) in several hindlimb muscles and around the left tibial (Tib) nerve at the ankle to elicit reflexes during locomotion before and after spinalization in the same cat. Control values of kinematics, EMGs and reflexes were obtained during intact locomotion for 33-60 days before spinalization. After spinalization, cats were trained 3-5 times a week on a motorized treadmill. Recordings resumed once a stable spinal locomotion was achieved (26-43 days), with consistent plantar foot placement and full hindquarter weight support without perineal stimulation. Changes in Tib nerve reflex responses after spinalization in the same cat during locomotion were found in all muscles studied and were often confined to specific phases of the step cycle. The most remarkable change was the appearance of short-latency excitatory responses in some ipsilateral ankle extensors during stance. Short-latency excitatory responses in the ipsilateral tibialis anterior were increased during stance, whereas in other flexors such as semitendinosus and sartorius, increases were mostly confined to swing. Longer-latency excitatory responses in ipsilateral flexors were absent or reduced. Responses evoked in limb muscles contralateral to stimulation were generally increased throughout the step cycle. These reflex changes after spinalization provide important clues regarding the functional reorganization of reflex pathways during spinal locomotion.
Locomotor and Reflex Adaptation After Partial Denervation of Ankle Extensors in Chronic Spinal Cats
Journal of Neurophysiology, 2008
Frigon A, Rossignol S. Locomotor and reflex adaptation after partial denervation of ankle extensors in chronic spinal cats. . This work investigates the capacity of the spinal cord to generate locomotion after a complete spinal section and its ability to adapt its locomotor pattern after a peripheral nerve lesion. To study this intrinsic adaptive capacity, the left lateral gastrocnemius-soleus (LGS) nerve was sectioned in three cats that expressed a stable locomotion following a complete spinal transection. The electromyograph (EMG) of multiple hindlimb muscles and reflexes, evoked by stimulating the left tibial (Tib) nerve at the ankle, were recorded before and after denervation during treadmill locomotion. Following denervation, the mean amplitude of EMG bursts of multiple hindlimb muscles increased during locomotion, similar to what is found after an identical denervation in otherwise intact cats. Reflex changes were noted in ipsilateral flexors, such as semitendinosus and tibialis anterior, but not in the ipsilateral knee extensor vastus lateralis following denervation. The present results demonstrate that the spinal cord possesses the circuitry necessary to mediate increased EMG activity in multiple hindlimb muscles and also to produce changes in reflex pathways after a muscle denervation. The similarity of changes following LGS denervation in cats with an intact and transected spinal cord suggests that spinal mechanisms play a major role in the locomotor adaptation.
Brain Research, 1991
The coordination of the motor pools of two ankle plantarflexors, i.e. the soleus (Sol) and medial gastrocnemius (MG), and an ankle dorsiflexor, i.e. the tibialis anterior (TA) was quantified by comparing the EMG amplitude relationships in muscle pairs in normal and trained adult spinalized cats during treadmill walking across a range of relatively slow speeds (0.1 to 1.0 m/s). The effects of increased tactile stimulation or loading on locomotor performance were also studied in the spinal cats. Joint probability density distributions in the spinalized cats showed a low level of MG activation relative to Sol which did not change as speed increased. In general, the coordination between Sol and MG was similar in normal and spinal cats. However, towards the final phase of the extensor burst, the MG EMG amplitude decayed prematurely in spinal cats, particularly at higher speeds. Preferential elevation of MG relative to Sol activity was seen as a result of tactile stimulation. An elevated load resulted in a higher level of MG activation relative to Sol, prolonged MG activity at the end of the extensor burst, and the reduction in the clonic pattern of EMG typical of spinal cats. Spinalized cats showed an increased incidence of SoI-TA coactivation, especially at the higher speeds, due in part to the tonic activity in the TA. However, the overall reciprocal relationship between these antagonists was maintained. This reciprocity was preserved, but the high level of coactivation was unaffected by tactile stimulation. An elevated load, however, resulted in less SoI-TA coactivation. These results suggest that the coordination between synergists (SoI-MG) and between antagonists (SoI-TA and MG-TA), as well as the level of activation are modulated in the adult spinal cat similar to that observed in the normal cat. Further, there are specific types of proprioceptive-cutaneous information that can affect selected phases of the step cycle such that full weight-supporting stepping is significantly improved.
Experimental Brain Research, 1992
Low-threshold, short-latency cutaneous reflexes evoked in ipsilateral hindlimb motor nerves were examined during fictive locomotion. Locomotion in 11 anaemically decerebrated spinal animals (1-3 weeks after transection at T13-L1) was induced by administration of clonidine, L-dopa and nialamide; by administration of the latter two drugs only; or by exteroceptive stimulation in the absence of any drugs. The caudal and lateral cutaneous sural, caudal cutaneous femoral, saphenous and superficial peroneal nerves were stimulated at low threshold (1.5-3 T). Pooled results from all combinations of cutaneous nerves stimulated and muscle nerves recorded show that the initial response was excitatory in 40 of 50 triceps surae and 17 of 20 semitendinosus (St) electroneurograms (ENGs). These excitatory responses occurred at latencies that ranged from 5 to 15 ms and tended to be maximal during the motor nerve's active period in the step cycle (i.e. they were modulated in a phase-dependent manner). Only three inhibitory responses (9-12 ms earliest latency) were encountered in total: in two St ENGs of one animal and in one lateral gastrocnemius-soleus ENG of a different animal. In two animals a "second" excitatory response (15-25 ms latency) was sometimes recorded in triceps surae and St nerves and, interestingly, could be modulated out of phase with the early response. Weak short-latency excitatory reflexes were also found in contralateral St ENGs when examined. Finally, among medial gastrocnemius, lateral gastrocnemius and soleus nerves, excitatory responses due to stimulation of any particular cutaneous nerve tended to be modulated similarly but were of consistently different amplitude among the three. This finding, together with the general observation that excitatory reflexes produced by stimulation of a particular cutaneous nerve were modulated similarly in extensors (or flexors) of different animals, suggests that spinal circuits generating locomotion may indeed exert a stereotypic control over interneurons in specific cutaneous reflex pathways to motoneurons. The results are primarily discussed in Correspondence to: S. Rossignol terms of the existing evidence for short-latency excitatory cutaneous reflexes in extensors in a variety of locomotive and non-locomotive preparations.
2010
Edgerton. Plasticity of spinal cord reflexes after a complete transection in adult rats: relationship to stepping ability. . Changes in epidurally induced (S1) spinal cord reflexes were studied as a function of the level of restoration of stepping ability after spinal cord transection (ST). Three types of responses were observed. The early response (ER) had a latency of 2.5 to 3 ms and resulted from direct stimulation of motor fibers or motoneurons. The middle response (MR) had a latency of 5 to 7 ms and was monosynaptic. The late response (LR) had a latency of 9 to 11 ms and was polysynaptic. After a complete midthoracic ST, the LR was abolished, whereas the MR was facilitated and progressively increased. The LR reappeared about 3 wk after ST and increased during the following weeks. Restoration of stepping induced by epidural stimulation at 40 Hz coincided with changes in the LR. During the first 2 wk post-ST, rats were unable to step and electrophysiological assessment failed to show any LR. Three weeks post-ST, epidural stimulation resulted in a few steps and these coincided with reappearance of the LR. The ability of rats to step progressively improved from wk 3 to wk 6 post-ST. There was a continuously improved modulation of rhythmic EMG bursts that was correlated with restoration of the LR. These results suggest that restoration of polysynaptic spinal cord reflexes after complete ST coincides with restoration of stepping function when facilitated by epidural stimulation. Combined, these findings support the view that restoration of polysynaptic spinal cord reflexes induced epidurally may provide a measure of functional restoration of spinal cord locomotor networks after ST.
Adaptive Mechanisms of Spinal Locomotion in Cats
Integrative and Comparative Biology, 2004
SYNOPSIS. This paper reviews some aspects of locomotor plasticity after spinalisation and after peripheral nerve lesions. Adult cats can recover spontaneous hindlimb locomotion on a treadmill several days or weeks after a complete section of the spinal cord at T13. The kinematics as well as the electromyographic activity are compared in the same animal before and after the spinal section to highlight the resemblance of locomotor characteristics in the two conditions. To study further the mechanisms of spinal plasticity potentially underlying such locomotor recovery, we also summarize the locomotor adaptation of cats submitted to various types of peripheral nerve section of either ankle flexor or extensor muscles or after denervation of the hindpaws' cutaneous inputs. It is argued that, even in the spinal state, cats have the ability to compensate for such lesions of the peripheral nervous system suggesting that the spinal cord has a significant potential for adaptive plasticity that could be used in rehabilitation strategies to restore locomotion after spinal cord injury.
Journal of Neurophysiology, 2009
Frigon A, Barrière G, Leblond H, Rossignol S. Asymmetric changes in cutaneous reflexes after a partial spinal lesion and retention following spinalization during locomotion in the cat. involves dynamic interactions between the spinal cord, supraspinal signals, and peripheral sensory inputs. After incomplete spinal cord injury (SCI), interactions are disrupted, and remnant structures must optimize function to maximize locomotion. We investigated if cutaneous reflexes are altered following a unilateral partial spinal lesion and whether changes are retained within spinal circuits after complete spinal transection (i.e., spinalization). Four cats were chronically implanted with recording and stimulating electrodes. Cutaneous reflexes were evoked with cuff electrodes placed around left and right superficial peroneal nerves. Control data, consisting of hindlimb kinematics and electromyography (bursts of muscular activity and cutaneous reflexes), were recorded during treadmill locomotion. After stable control data were achieved (53-67 days), a partial spinal lesion was made at the 10th or 11th thoracic segment (T 10 -T 11 ) on the left side. Cats were trained to walk after the partial lesion, and following a recovery period (64 -80 days), a spinalization was made at T 13 . After the partial lesion, changes in short-latency excitatory (P1) homologous responses between hindlimbs, evoked during swing, were largely asymmetric in direction relative to control values, whereas changes in longer-latency excitatory (P2) and crossed responses were largely symmetric in direction. After spinalization, cats could display hindlimb locomotion within 1 day. Early after spinalization, reflex changes persisted a few days, but over time homologous P1 responses increased symmetrically toward or above control levels. Therefore changes in cutaneous reflexes after the partial lesion and retention following spinalization indicate an important spinal plasticity after incomplete SCI.