An Argument for 4D Blockworld from a Geometric Interpretation of Non-relativistic Quantum Mechanics (original) (raw)


The Relational Blockworld (RBW) interpretation of non-relativistic quantum mechanics (NRQM) is introduced. Accordingly, the spacetime of NRQM is a relational, non-separable blockworld whereby spatial distance is only defined between interacting trans-temporal objects. RBW is shown to provide a novel statistical interpretation of the wavefunction that deflates the measurement problem, as well as a geometric account of quantum entanglement and non-separability that satisfies locality per special relativity and is free of interpretative mystery. We present RBW’s acausal and adynamical resolution of the so-called “quantum liar paradox,” an experimental set-up alleged to be problematic for a spacetime conception of reality, and conclude by speculating on RBW’s implications for quantum gravity.

What ontology does realism about the quantum state suggest? The main extant view in contemporary philosophy of physics is wave-function realism. We elaborate the sense in which wave-function realism does provide an ontological picture; and defend it from certain objections that have been raised against it. However, there are good reasons to be dissatisfied with wave-function realism, as we go on to elaborate. This motivates the development of an opposing picture: what we call spacetime state realism; a view which takes the states associated to spacetime regions as fundamental. This approach enjoys a number of beneficial features, although, unlike wave-function realism, it involves non-separability at the level of fundamental ontology. We investigate the pros and cons of this non-separability, arguing that it is a quite acceptable feature; even one which proves fruitful in the context of relativistic covariance. A companion paper [still not extant as of 2011, sorry - DW] discusses the prospects for combining a spacetime-based ontology with separability, along lines suggested by Deutsch and Hayden.

A generalized equivalence principle is put forward according to which space-time symmetries and internal quantum symmetries are indistinguishable before symmetry breaking . Based on this principle, a higher-dimensional extension of Minkowski space is proposed and its properties examined. In this scheme the structure of space-time is intrinsically quantum mechanical. It is shown that the causal geometry of such a quantum space-time (QST) possesses a rich hierarchical structure. The natural extension of the Poincaré group to QST is investigated. In particular, we prove that the symmetry group of this space is generated in general by a system of irreducible Killing tensors. After the symmetries are broken, the points of the QST can be interpreted as space-time valued operators . The generic point of a QST in the broken symmetry phase then becomes a Minkowski space-time valued operator. Classical space-time emerges as a map from QST to Minkowski space. It is shown that the general such ...

The possibility of explaining quantum phenomena on a spatial-temporal foundation is developed further. Motivation for this alternative investigation has its origins in the EPR paradox. Analysis of Bell inequalities identified the assumption of metric variable-type for physical quantities, additional to that of local causality. Similar analysis is extended to EPR-steering, Hardy non-locality and the more recently introduced Cabello quantum contextuality inequalities. The same algebraic assumption is present in these later configurations. Because of the nexus between variable-type and underlying geometry, and by implication space structure, violation of EPR experiments can be attributed to space being non-metric. Analysis of Heisenberg gedanken experiments leads to the same conclusion. Quantum mechanics, including also QFT, is then foundationally explainable in terms of space, time and geometry consistent with relativity.

Abstract The fundamental relation between space and time is motion expressed as the ratio of space over time for motion in space and the ratio of time over space for motion in time. This indicates that space and time are co-existent reciprocal aspects of motion. While inseparable and interdependent both space and time have distinct geometric properties. There are two fundamental quantum holographic interference patterns which most closely exemplify these structural properties. These are separately identified and defined consistent with the space-time reciprocal relationship. Quantum time potentials and space time networks are defined. The first network consists of two interacting quantum time potentials forming a space-time network whereby space is an emergent feature; there being an inverse structure with inverse properties. The phenomenon of mass and force are emergent features from the various permutations of interconnections between nodes within this space-time network. The resulting structure implies the existence of a coordinate system where each node represents coordinates defined by the rays from each pole. The coordinates form an information field and indicate that space and time ARE information, The connections between the nodes are determined by pre-mathematical connection algorithms indicating the underlying mechanism of creation. Further properties of the space-time network are identified and reveal underlying mechanisms to account for elusive and anomalous physical phenomenon including non-locality, quantum entanglement and quantum gravity.