No Preferred Reference Frame at the Foundation of Quantum Mechanics (original) (raw)
Abstract
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (75)
- Feynman, R. The Character of Physical Law. 1964. Available online: https://www.facebook.com/watch/?v=967586087044967 (accessed on 11 November 2021).
- Wolpert, L. The Unnatural Nature of Science; Harvard University Press: Cambridge, MA, USA, 1993; p. 144.
- Drummond, B. Understanding quantum mechanics: A review and synthesis in precise language. Open Phys. 2019, 17, 390-437.
- Hardy, L. Quantum Theory From Five Reasonable Axioms. arXiv 2001, arXiv:quant-ph/0101012.
- Fuchs, C. Quantum Mechanics as Quantum Information (and only a little more). arXiv 2002, arXiv:quant-ph/0205039.
- Galindo, A.; Martín-Delgado, M. Information and computation: Classical and quantum aspects. Rev. Mod. Phys. 2002, 74, 347-423.
- Barrett, J. Information processing in generalized probabilistic theories. Phys. Rev. Lett. 2007, 75, 032304. [CrossRef]
- Brukner, C.; Zeilinger, A. Information Invariance and Quantum Probabilities. Found. Phys. 2009, 39, 677. [CrossRef]
- Dakic, B.; Brukner, C. Quantum Theory and Beyond: Is Entanglement Special? In Deep Beauty: Understanding the Quantum World through Mathematical Innovation; Halvorson, H., Ed.; Cambridge University Press: Cambridge, MA, USA, 2009; pp. 365-392.
- Masanes, L.; Müller, M. A derivation of quantum theory from physical requirements. New J. Phys. 2011, 13, 063001. [CrossRef]
- Chiribella, G.; D'Ariano, G.; Perinotti, P. Informational derivation of Quantum Theory. Phys. Rev. A 2011, 84, 012311. [CrossRef]
- Hardy, L. Reformulating and Reconstructing Quantum Theory. arXiv 2011, arXiv:1104.2066.
- Hardy, L. Reconstructing Quantum Theory. In Quantum Theory: Informational Foundations and Foils; Chiribella, G., Spekkens, R., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 223-248.
- Goyal, P. From Information Geometry to Quantum Theory. New J. Phys. 2010, 12, 023012. [CrossRef]
- Kochen, S. A Reconstruction of Quantum Mechanics. Found. Phys. 2015, 45, 557-590. [CrossRef]
- Oeckl, R. A first-principles approach to physics based on locality and operationalism. Proc. Sci. 2016, FFP14, 171.
- Höhn, P. Toolbox for reconstructing quantum theory from rules on information acquisition. Quantum 2017, 1, 38. [CrossRef]
- Höhn, P.; Wever, C. Quantum theory from questions. Phys. Rev. A 2017, 95, 012102. [CrossRef]
- Masanes, L.; Müller, M.; Augusiak, R.; Perez-Garcia, D. Existence of an information unit as a postulate of quantum theory. Proc. Natl. Acad. Sci. USA 2013, 110, 16373. [CrossRef]
- de la Torre, G.; Masanes, L.; Short, A.; Müller, M. Deriving quantum theory from its local structure and reversibility. Phys. Rev. Lett. 2012, 109, 090403. [CrossRef]
- Fivel, D. Derivation of the Rules of Quantum Mechanics from Information-Theoretic Axioms. Found. Phys. 2012, 42, 291-318.
- Barnum, H.; Müller, M.; Ududec, C. Higher-order interference and single-system postulates characterizing quantum theory. New J. Phys. 2014, 16, 12302. [CrossRef]
- Koberinski, A.; Müller, M. Quantum Theory as a Principle Theory: Insights from an Information-Theoretic Reconstruction. In Physical Perspectives on Computation, Computational Perspectives on Physics; Cuffaro, M., Fletcher, S., Eds.; Cambridge University Press: Cambridge, MA, USA, 2018; pp. 257-280.
- Jaeger, G. Information and the Reconstruction of Quantum Physics. Ann. Pysik 2018, 531, 1800097. [CrossRef]
- Bub, J. Quantum Mechanics as a Principle Theory. Stud. Hist. Philos. Mod. Phys. 1999, 31, 75-94. [CrossRef]
- Van Camp, W. Principle Theories, Constructive Theories, and Explanation in Modern Physics. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2011, 42, 23-31. [CrossRef]
- Felline, L. Quantum Theory is Not Only About Information. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2018, 1355-2198. [CrossRef]
- Bell, J. Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, MA, USA, 1987.
- Mamone-Capria, M. On the Incompatibility of Special Relativity and Quantum Mechanics. J. Found. Appl. Phys. 2018, 8, 163-189.
- Alford, M. Ghostly action at a distance: A non-technical explanation of the Bell inequality. Am. J. Phys. 2016, 84, 448-457.
- Popescu, S.; Rohrlich, D. Quantum nonlocality as an axiom. Found. Phys. 1994, 24, 379-385. [CrossRef]
- Bub, J. 'Two Dogmas' Redux. In Quantum, Probability, Logic: The Work and Influence of Itamar Pitowsky; Hemmo, M., Shenker, O., Eds.; Springer Nature: London, UK, 2020; pp. 199-215.
- Brukner, C. Quantum Reference Frames and Spacetime. 2021. Available online: https://www.iqoqi-vienna.at/research/brukner- group/quantum-reference-frames-and-spacetime (accessed on 11 November 2021).
- Mikusch, M.; Barbado, L.; Brukner, C. Transformation of Spin in Quantum Reference Frames. arXiv 2021, arXiv:2103.05022.
- Streiter, L.; Giacomini, F.; Brukner, C. Relativistic Bell Test within Quantum Reference Frames. Phys. Rev. Lett. 2021, 126, 230403. [CrossRef] [PubMed]
- Lamata, L.; Martin-Delgado, M.; Solano, E. Relativity and Lorentz Invariance of Entanglement Distillability. Phys. Rev. Lett. 2006, 97, 250502. [CrossRef]
- Davis, M. A relativity principle in quantum mechanics. Int. J. Theor. Phys. 1977, 16, 867-874. [CrossRef]
- Dragan, A.; Ekert, A. Quantum principle of relativity. New J. Phys. 2020, 22, 033038. [CrossRef]
- Garner, A.; Müller, M.; Dahlsten, O. The complex and quaternionic quantum bit from relativity of simultaneity on an interferome- ter. Proc. R. Soc. A 2017, 473, 20170596. [CrossRef] [PubMed]
- Arraut, I. The solution to the Hardy's paradox. arXiv 2021, arXiv:2106.06397.
- Dakic, B.; Brukner, C. The classical limit of a physical theory and the dimensionality of space. In Quantum Theory: Informational Foundations and Foils; Chiribella, G., Spekkens, R., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 249-282.
- Dakic, B. Operational Reconstruction of Quantum Theory. 2021. Available online: https://dakic.univie.ac.at/research/ operational-reconstruction-of-quantum-theory/ (accessed on 11 November 2021).
- Norton, J.D. Einstein's Special Theory of Relativity and the Problems in the Electrodynamics of Moving Bodies That Led Him to It. In The Cambridge Companion to Einstein; Janssen, M., Lehner, C., Eds.; Cambridge Companions to Philosophy, Cambridge University Press: Cambridge, MA, USA, 2014; pp. 72-102. [CrossRef]
- Serway, R.; Jewett, J. Physics for Scientists and Engineers with Modern Physics; Cengage: Boston, MA, USA, 2019; p. 1080.
- Moylan, P. The Galilean Transformation, Velocity Reciprocity and the Relativity Principle. Am. J. Phys. 2021, to appear.
- Fuchs, C.; Stacey, B. Some Negative Remarks on Operational Approaches to Quantum Theory. In Quantum Theory: Informational Foundations and Foils; Chiribella, G., Spekkens, R., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 283-305.
- Chiribella, G.; Spekkens, R. Introduction. In Quantum Theory: Informational Foundations and Foils; Chiribella, G., Spekkens, R., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 1-18.
- Müller, M. Reconstructions of Quantum Theory. 2021. Available online: https://www.iqoqi-vienna.at/research/mueller-group/ reconstructions-of-quantum-theory (accessed on 11 November 2021).
- Brown, H.; Timpson, C. Why special relativity should not be a template for a fundamental reformulation of quantum mechanics. In Physical Theory and Its Interpretation: Essays in Honor of Jeffrey Bub; Demopoulos, W., Pitowsky, I., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 29-41.
- Einstein, A. What is the Theory of Relativity? London Times, 28 November 1919.
- Bell, J. Indeterminism and Nonlocality. In Mathematical Undecidability, Quantum Nonlocality and the Question of the Existence of God; Driessen, A., Suarez, A., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 78-89. Available online: https: //philarchive.org/archive/DRIMUQ (accessed on 11 November 2021).
- Einstein, A. Autobiographical Notes. In Albert Einstein: Philosopher-Scientist;
- Schilpp, P.A., Ed.; Open Court: La Salle, IL, USA, 1949; pp. 3-94.
- Müller, M. Probabilistic Theories and Reconstructions of Quantum Theory (Les Houches 2019 lecture notes). SciPost Phys. Lect. Notes 2021, 28. [CrossRef]
- Man'ko, O.V.; Man'ko, V.I. Probability Representation of Quantum States. Entropy 2021, 23, 549. [CrossRef]
- Brukner, C.; Zeilinger, A. Information and fundamental elements of the structure of quantum theory. In Time, Quantum, Information; Castell, L., Ischebeckr, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 323-354.
- Stuckey, W.; Silberstein, M.; McDevitt, T.; Kohler, I. Why the Tsirelson Bound? Bub's Question and Fuchs' Desideratum. Entropy 2019, 21, 692. [CrossRef] [PubMed]
- Stuckey, W.; Silberstein, M.; McDevitt, T.; Le, T. Answering Mermin's Challenge with Conservation per No Preferred Reference Frame. Sci. Rep. 2020, 10, 15771. [CrossRef]
- Silberstein, M.; Stuckey, W.; McDevitt, T. Beyond Causal Explanation: Einstein's Principle Not Reichenbach's. Entropy 2021, 23, 114. [CrossRef] [PubMed]
- Knight, R. Physics for Scientists and Engineers with Modern Physics; Pearson: San Francisco, CA, USA, 2008.
- Paterek, T.; Dakic, B.; Brukner, C. Theories of systems with limited information content. New J. Phys. 2010, 12, 053037. [CrossRef]
- Brukner, C. Information-Theoretic Foundations of Quantum Theory. 2021. Available online: https://www.iqoqi-vienna.at/ research/brukner-group/information-theoretic-foundations-of-quantum-theory (accessed on 11 November 2021).
- Hardy, L. Towards Quantum Gravity: A Framework for Probabilistic Theories with Non-Fixed Causal Structure. J. Phys. A 2007, 40, 3081. [CrossRef]
- Zeilinger, A. A Foundational Principle for Quantum Mechanics. Found. Phys. 1999, 29, 631-6438. [CrossRef]
- Brukner, C.; Zeilinger, A. Operationally Invariant Information in Quantum Measurements. Phys. Rev. Lett. 1999, 83, 3354-3357.
- Weinberg, S. The Trouble with Quantum Mechanics. 2017. Available online: https://www.nybooks.com/articles/2017/01/19 /trouble-with-quantum-mechanics/ (accessed on 11 November 2021).
- Franklin, A.; Perovic, S. Experiment in Physics: Appendix 5: Right Experiment, Wrong Theory: The Stern-Gerlach Experiment. 2019. Available online: https://plato.stanford.edu/entries/physics-experiment/app5.html (accessed on 11 November 2021).
- Bane, D. The Mechanical Universe Episode 41: The Michelson-Morley Experiment; Albert Michelson Quote from 1931; Cal Tech: Pasadena, CA, USA, 1985.
- Cirel'son, B. Quantum Generalizations of Bell's Inequality. Lett. Math. Phys. 1980, 4, 93-100. [CrossRef]
- Landau, L. On the violation of Bell's inequality in quantum theory. Phys. Lett. A 1987, 120, 54-56. [CrossRef]
- Khalfin, L.; Tsirelson, B. Quantum/Classical Correspondence in the Light of Bell's Inequalities. Found. Phys. 1992, 22, 879-948.
- Terhal, B. Bell inequalities and separability criterion. Phys. Lett. A 2000, 271, 319. [CrossRef]
- Chruscinski, D.; Sarbicki, G. Entanglement witnesses: Construction, analysis and classification. J. Phys. A 2014, 47, 483001.
- Brukner, C. Macroscopic Entanglement Witnesses. 2021. Available online: https://www.iqoqi-vienna.at/research/brukner- group/macroscopic-entanglement-witnesses (accessed on 11 November 2021).
- Lorentz, H. The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat; G.E. Stechert and Co.: New York, NY, USA, 1916.