Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways (original) (raw)

Bioactive N-acylethanolamines include anandamide (an endocannabinoid), N-palmitoylethanolamine (an anti-inflammatory), and N-oleoylethanolamine (an anorexic). In the brain, these molecules are formed from N-acylphosphatidylethanolamines (NAPEs) by a specific phospholipase D, called NAPE-PLD, or through NAPE-PLD-independent multi-step pathways, as illustrated in the current study employing NAPE-PLD-deficient mice. Although N-acylethanolamine plasmalogen (1-alkenyl-2-acyl-glycero-3-phospho(N-acyl)ethanolamine, pNAPE) is presumably a major class of N-acylethanolamine phospholipids in the brain, its enzymatic conversion to N-acylethanolamines is poorly understood. In the present study, we focused on the formation of Nacylethanolamines from pNAPEs. While recombinant NAPE-PLD catalyzed direct release of N-palmitoylethanolamine from N-palmitoylethanolamine plasmalogen, the same reaction occurred in the brain homogenate of NAPE-PLD-deficient mice, suggesting that this reaction occurs through both the NAPE-PLD-dependent and-independent pathways. Liquid chromatography-mass spectrometry revealed a remarkable accumulation of 1alkenyl-2-hydroxy-glycero-3-phospho(N-acyl)ethanolamines (lyso pNAPEs) in the brain of NAPE-PLD-deficient mice. We also found that brain homogenate formed N-palmitoylethanolamine, N-oleoylethanolamine, and anandamide from their corresponding lyso pNAPEs by a Mg 2+-dependent "lysophospholipase D". Moreover, the brain levels of alkenyl-type lysophosphatidic acids, the other products from lyso pNAPEs by lysophospholipase D, also increased in NAPE-PLD-deficient mice. Glycerophosphodiesterase GDE1 can hydrolyze glycerophospho-Nacylethanolamines to N-acylethanolamines in the brain. In addition, we discovered that recombinant GDE1 has a weak activity to generate N-palmitoylethanolamine from its corresponding lyso pNAPE, suggesting that this enzyme is at least in part responsible for the lysophospholipase D activity. These results strongly suggest that brain tissue N-acylethanolamines, including anandamide, can be formed from N-acylated plasmalogen through an NAPE-PLD-independent pathway as well as by their direct release via NAPE-PLD.