Gastrin/CCK-ergic innervation of cutaneous mucous gland by the supramedullary cells of the puffer fish Takifugu niphobles (original) (raw)
Related papers
Spinal and facial innervation of the skin in the gadid fishCiliata mustela (Teleostei)
J Comp Neurol, 1993
The pattern of innervation of the skin of the rockling Ciliata mustela was investigated to sort out spinal from facial nerve innervation of cutaneous chemosensory and mechanosensory systems. This fish has a variety of appendages with different functional sensory specializations, i.e., the chin barbel, pelvic fin, anterior dorsal fin, and dorsal trunk skin. The carbocyanine dye, diI, was applied to nerve stumps in dissected aldehyde-fixed tissue. In the case of the chin barbel, the dye was applied to both the trigeminal and facial nerve components. In the other cases, the dye was applied either selectively to the spinal nerves, to the facial nerves, or to both components. In the chin barbel, diI labeled nerve fibers associated with taste buds (TBs) and solitary chemosensory cells (SCCs) as well as relatively blunt free nerve endings, which closely approach the epidermal surface. In the pelvic fin, anterior dorsal fin, and dorsal trunk skin, taste buds, solitary chemosensory cells, and their innervation were labeled only after diI was applied to the facial nerve stumps. Application of diI to spinal nerves labeled delicate, free nerve endings and nerve fibers associated with small cells deep in the epidermis with features characteristic of Merkel cells. Transmission electron microscopy supports these results; after denervation of the facial component of the anterior dorsal fin, synaptic contacts with Merkel cells remained intact, whereas the synapses with the SCCs vanished.
The Histochemical Journal, 1994
The neuro-endocrine cells of fish skin and respiratory surfaces, and their bioactive secretion as far as is known, are reviewed, and compared with similar elements in tetrapods, particularly amphibians. In the skin of teleost fish, immunohistochemistry has shown that Merkel cells react for serotonin, neuron-specific enolase and enkephalins. The pharmacology is not established in dipnoans or lampreys. In some teleosts, neuromasts react for substance P and leu-enkephalins; substance P is also reported from some ampullary organs (electroreceptors). Taste buds of teleosts may react for enkephalin and substance P. Basal cells of taste buds react for serotonin and neuron-specific enolase. Some unicellular skin glands of teleosts express bioactive compounds, including serotonin and some peptides; this ectopic expression is paralleled in amphibian skin glands. The dipnoan Protopterus has innervated pulmonary neuro-endocrine cells in the pneumatic duct region with dense-cored vesicles. In Polypterus and Amia the lungs have serotonin-positive neuro-endocrine cells that are apparently not innervated. In fish gills, a closed type of neuro-endocrine cell reacts for serotonin, an open type for enkephalins and some calcium-binding proteins (calbindin, calmodulin and S-100 protein). The functions of neuro-endocrine cells in fishes await investigation, but it is assumed they are regulatory.
Gastrin/CCK-like immunoreactivity in the nervous system of coelenterates
Histochemistry, 1980
Using immunocytochemistry, gastrin/CCK-like immunoreactivity is found in sensory nerve cells in the ectoderm of the mouth region of hydra and in nerve cells in the endoderm of all body regions of the sea anemone tealia. These results are corroborated by radioimmunoassay: One hydra contains at least 5 fmole and one tealia at least 2 nmole gastrin/CCKlike immunoreactivity. Reactivities towards gastrin and CCK antisera with different specificities suggest that the coelenterate gastrin/CCK-like peptide contains the C-terminal amino-acid sequence common to mammalian gastrin and CCK. In addition the radioimmunochemical data indicate that the coelenterate peptide also contains an amino-acid sequence that resembles the sequence 20-30 of porcine CCK-33, but that no other sequences of gastrin are present. Thus, it is probably more CCK-like than gastrin-like.
The Journal of Comparative Neurology, 2000
Immunoreactivity for substance P and cholecystokinin-8 was examined in the nerve fibers in the central autonomic nucleus, a cell column for sympathetic preganglionic neurons, in the filefish Stephanolepis cirrhifer. Substance P-immunoreactive fibers were distributed throughout the entire rostrocaudal extent, but were more abundant in the caudal part of the column, where substance P-immunoreactive varicosities sometimes made contacts with the sympathetic preganglionic neurons. Cholecystokinin-8-immunoreactive fibers were found almost entirely in the rostral part of the column, where a dense network of varicosities was in close apposition to a considerable number of the sympathetic preganglionic neurons. Double labeling immunohistochemistry showed that substance P fibers and cholecystokin-8 fibers were entirely different, and distinct from serotonin-immunoreactive fibers. By using immunoelectron microscopy, synaptic specialization was sometimes observed between the dendrites of preganglionic neurons and varicosities immunoreactive for substance P and cholecystokinin-8. Substance P-and cholecystokinin-8 fibers were seen from the descending trigeminal tract, through the dorsolateral funiculus and the ventral portion of the dorsal horn, to the central autonomic nucleus. After colchicine treatment, substance P-immunoreactive perikarya were found in the cranial and spinal sensory ganglia. These results suggest that the sympathetic preganglionic neurons of the filefish receive innervation by substance P fibers and cholecystokinin fibers, and that the former might be of primary sensory origin. Topographical distribution of cholecystokinin-8-immunoreactive terminals in the central autonomic nucleus along the rostrocaudal extent might underlie the differential regulation of sympathetic activity via a distinct population of sympathetic preganglionic neurons.
Neurochemical features of the innervation of respiratory organs in some air‐breathing fishes
Italian Journal of Zoology, 2005
ABSTRACT A number of studies has been performed in recent years regarding the structure of the autonomic innervation of the gill and various organs of fishes, but only limited information exists on the role of the autonomic nervous system in air-breathing organs. The mechanisms for physiologically integrating gill and air-breathing organs are also not fully understood. The presence of neuropeptides and nNOS in gill autonomie nerves has been investigated in recent years by several Authors. Immunohistochemical localization of neuropeptides and nNOS in the autonomie nerves in the vasculatures and smooth muscle of air-breathing organs is reported for the first time. The function of NO in these tissues also remains to be elucidated especially, when the bulk of neurotransmission is attributable to cholinergic and adrenergic mechanisms. A challenge for future years is to understand the role of the autonomie nervous systems and the vasoactive substances in the in-series and in-parallel vascular connections between systemic gill and air-breathing organs.
Acta Histochemica, 2003
Gill and air sac of the indian catfish Heteropneustes fossilis harbour a nerve network comprising an innervated system of neuroepithelial endocrine cells; the latter cells are found especially in the gill. A series of antibodies was used for the immunohistochemical detection of neurotransmitters of the neural non-adrenergic, non-cholinergic (NANC) systems such as the sensory neuropeptides (enkephalins), the inhibitory neuropeptide VIP and neuronal nitric oxide synthase (nNOS) responsible for nitric oxide (NO) production which is an inhibitory NANC neurotransmitter. NADPH-diaphorase (NADPH-d) histochemistry was used as marker of nNOS although it is not a specific indicator of constitutively-expressed NOS in gill and air sac tissues. A tyrosine hydroxylase antibody was used to investigate adrenergic innervation. Nitrergic and VIP-positive sensory innervation was found to be shared by gill and air sac. Immunohistochemistry revealed the presence of enkephalins, VIP, NOS and NADPH-d in nerves associated with branchial and air sac vasculature, and in the neuroendocrine cell systems of the gill. Adrenergic nerve fibers were found in some parts of the air sac vasculature. The origin of the nerve fibers remains unclear despite previous findings showing the presence of both NADPH-d and nNOS in the sensory system of the glossopharyngeal and vagus nerves including the branchial structure. Scarce faintly stained nNOS-positive neurons were located in the gill but were never detected in the air sac. These findings lead to the conclusion that a postganglionic innervation of the airways is absent. Mucous goblet cells in the gill were found to express nNOS and those located in the non-respiratory interlamellar areas of the air sac were densely innervated by nNOS-positive and VIP-positive nerve fibers. Our immunohistochemical studies demonstrate that most arteries of the gill and air sac share a NANC (basically nitrergic) innervation which strongly suggests that they are homologous structures.
Neuroscience Letters, 2001
In the cellular column of sympathetic preganglionic neurons (SPNs) of the filefish Stephanolepis cirrhifer, neurons containing galanin (GAL) form a distinct population projecting specifically to non-adrenergic postganglionic neurons in the celiac and cranial sympathetic ganglia. The present study showed that virtually all of the GAL-immunopositive SPNs made contact with many nerve terminals immunopositive for cholecystokinin octapeptide (CCK-8). GAL-negative preganglionic neurons made contact with only 26% of this type of nerve terminal; CCK-8-immunopositive nerve fibers appeared to project selectively to GAL-immunopositive SPNs with projections to specific targets. The CCK-8-positive nerve fibers might be of primary sensory origin, and participate in the visceral reflexes. q
Journal of Experimental Zoology, 2000
The immunostaining pattern for the peptide gastrin/cholecystokinin 8 (gastrin/ CCK8) in the molluscan central nervous system has been considered. The changes in the distribution of gastrin/CCK8 immunoreactivity were analyzed in the neurons of different areas of the cerebral ganglia (mesocerebrum and metacerebrum) and in the buccal ganglia of the terrestrial snail Helix aspersa, during rest and active phases. During the period of inactivity and after one day of activity, there were several immunoreactive neurons in the mesocerebrum and metacerebrum of the snails and in the buccal ganglia, whereas after 7 days of activity the number of labeled neurons decreased. Data suggested a storage of gastrin/CCK8 in the neurons when behavioral activities in which the peptide is involved (such as feeding-related behavior) are suppressed or reduced. The different percentage of gastrin/CCK8 immunoreactive neurons in the left and right mesocerebrum provides information about the activities controlled by these neurons, which could be related to the adaptive evolution and plasticity of the brain in terrestrial pulmonates.
Neuroscience Letters, 2000
Serotonin-immunoreactive axonal components were observed in the central autonomic nucleus (CAN), a cell column of sympathetic preganglionic neurons in the rostral spinal cord of the ®le®sh Stephanolepis cirrhifer. Serotonin-positive axonal varicosities were seen around neuronal perikarya through the whole rostrocaudal extent of the CAN, although their distribution pattern in the rostral CAN was different from that in the caudal CAN. Electron microscopically, serotonin-positive axonal varicosities were found to make axodendritic and axosomatic synapses on CAN neurons. Many serotonin-positive neuronal cell bodies were seen in the raphe nuclei in the lower brainstem, whereas only a few were found in the spinal cord. Thus most of serotoninergic axons within the CAN were considered to originate from the raphe nuclei in the lower brainstem. q
General and Comparative Endocrinology
The distribution of neurotensin-, substance P-, gastrin/cholecystokinin/carerulein- and bombesin-like immunoreactivities has been studied in the gut of the tilapia (Oreochromis mossambicus) and the goldfish (Carassius auratus) using immunohistochemistry and radioimmunoassay; the electrophysiological effects of these peptides on the intestinal epithelium were also examined with the Ussing-type chamber technique. Neurotensin- and gastrin/cholecystokinin/caerulein-like immunoreactivities were present in endocrine cells in both species. Substance P- and bombesin-like immunoreactive endocrine cells were present in the intestine of the tilapia. Neurotensin-like immunoreactivity was observed in varicose fibers and nerve cell bodies in the muscle layers and myenteric plexus of both species, whereas nerve fibers showing substance P-like immunoreactivity were found in the goldfish only. Using radioimmunoassays, neurotensin- and gastrin/cholecystokinin/caerulein-like immunoreactive materials w...