Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers (original) (raw)

Targeted metabolomic profiling in rat tissues reveals sex differences

Scientific reports, 2018

Sex differences affect several diseases and are organ-and parameter-specific. In humans and animals, sex differences also influence the metabolism and homeostasis of amino acids and fatty acids, which are linked to the onset of diseases. Thus, the use of targeted metabolite profiles in tissues represents a powerful approach to examine the intermediary metabolism and evidence for any sex differences. To clarify the sex-specific activities of liver, heart and kidney tissues, we used targeted metabolomics, linear discriminant analysis (LDA), principal component analysis (PCA), cluster analysis and linear correlation models to evaluate sex and organ-specific differences in amino acids, free carnitine and acylcarnitine levels in male and female Sprague-Dawley rats. Several intra-sex differences affect tissues, indicating that metabolite profiles in rat hearts, livers and kidneys are organ-dependent. Amino acids and carnitine levels in rat hearts, livers and kidneys are affected by sex: m...

Differential metabolomics analysis allows characterization of diversity of metabolite networks between males and females

PLOS ONE

Females and males are known to have different abilities to cope with stress and disease. This study was designed to investigate the effect of sex on properties of a complex interlinked network constructed of central biochemical metabolites. The study involved the blood collection and analysis of a large set of blood metabolic markers from a total of 236 healthy participants, which included 140 females and 96 males. Metabolic profiling yielded concentrations of 168 metabolites for each subject. A differential correlation network analysis approach was developed for this study that allowed detection and characterization of interconnection differences in metabolites in males and females. Through topological analysis of the differential network that depicted metabolite differences in the sexes, we identified metabolites with high centralities in this network. These key metabolites were identified as 10 phosphatidylcholines (

Sex differences in systemic metabolites at four life stages: cohort study with repeated metabolomics

BMC Medicine

Background Males experience higher rates of coronary heart disease (CHD) than females, but the circulating traits underpinning this difference are poorly understood. We examined sex differences in systemic metabolites measured at four life stages, spanning childhood to middle adulthood. Methods Data were from the Avon Longitudinal Study of Parents and Children (7727 offspring, 49% male; and 6500 parents, 29% male). Proton nuclear magnetic resonance (1H-NMR) spectroscopy from a targeted metabolomics platform was performed on EDTA-plasma or serum samples to quantify 229 systemic metabolites (including lipoprotein-subclass-specific lipids, pre-glycaemic factors, and inflammatory glycoprotein acetyls). Metabolites were measured in the same offspring once in childhood (mean age 8 years), twice in adolescence (16 years and 18 years) and once in early adulthood (25 years), and in their parents once in middle adulthood (50 years). Linear regression models estimated differences in metabolite...

Sex-associated differences in baseline urinary metabolites of healthy adults

Scientific reports, 2018

The biological basis for gender variability among disease states is not well established. There have been many prior efforts attempting to identify the unique urine metabolomic profiles associated with specific diseases. However, there has been little advancement in investigating the metabolomic differences associated with gender, which underlies the misconception that risk factors and treatment regimens should be the same for both male and female patients. This present study aimed to identify biologically-meaningful baseline sex-related differences using urine samples provided by healthy female and male participants. To elucidate whether urinary metabolic signatures are globally distinct between healthy males and females, we applied metabolomics profiling of primary metabolism with comprehensive bioinformatics analyses on urine samples from 60 healthy males and females. We found that levels of α-ketoglutarate and 4-hydroxybutyric acid increased 2.3-fold and 4.41-fold in males compa...

Lipid and metabolite correlation networks specific to clinical and biochemical covariate show differences associated with sexual dimorphism in a cohort of nonagenarians

2021

This study defines and estimates the metabolite-lipidic component association networks constructed from an array of 20 metabolites and 114 lipids identified and quantified via NMR spectroscopy in the serum of a cohort of 355 Italian nonagenarians and ultra-nonagenarian. Metabolite-lipid association networks were built for men and women and related to an array of 101 clinical and biochemical parameters, including the presence of diseases, bio-humoral parameters, familiarity diseases, drugs treatments, and risk factors. Different connectivity patterns were observed in lipids, branched chains amino acids, alanine, and ketone bodies, suggesting their association with the sex-related and sex-clinical condition-related intrinsic metabolic changes. Furthermore, our results demonstrate, using a holistic system biology approach, that the characterization of metabolic structures and their dynamic inter-connections is a promising tool to shed light on the dimorphic pathophysiological mechanism...

A Genome-Wide Assessment of Variability in Human Serum Metabolism

Human Mutation, 2013

The study of the genetic regulation of metabolism in human serum samples can contribute to a better understanding of the intermediate biological steps that lead from polymorphism to disease. Here, we conducted a genome-wide association study (GWAS) to discover metabolic quantitative trait loci (mQTLs) utilizing samples from a study of prostate cancer in Swedish men, consisting of 402 individuals (214 cases and 188 controls) in a discovery set and 489 case-only samples in a replication set. A global nontargeted metabolite profiling approach was utilized resulting in the detection of 6,138 molecular features followed by targeted identification of associated metabolites. Seven replicating loci were identified (PYROXD2, FADS1, PON1, CYP4F2, UGT1A8, ACADL, and LIPC) with associated sequence variants contributing significantly to trait variance for one or more metabolites (P = 10 −13 -10 −91 ). Regional mQTL enrichment analyses implicated two loci that included FADS1 and a novel locus near PDGFC. Biological pathway analysis implicated ACADM, ACADS, ACAD8, ACAD10, ACAD11, and ACOXL, reflecting significant enrichment of genes with acyl-CoA dehydrogenase activity. mQTL SNPs and mQTL-harboring genes were over-represented across GWASs conducted to date, suggesting that these data may have utility in tracing the molecular basis of some complex disease associations. Hum Mutat 34:515-524, 2013. C 2012 Wiley Periodicals, Inc.

Sex differences in hepatic one-carbon metabolism

BMC Systems Biology, 2018

Background: There are large differences between men and women of child-bearing age in the expression level of 5 key enzymes in one-carbon metabolism almost certainly caused by the sex hormones. These male-female differences in one-carbon metabolism are greatly accentuated during pregnancy. Thus, understanding the origin and consequences of sex differences in one-carbon metabolism is important for precision medicine. Results: We have created a mathematical model of hepatic one-carbon metabolism based on the underlying physiology and biochemistry. We use the model to investigate the consequences of sex differences in gene expression. We give a mechanistic understanding of observed concentration differences in one-carbon metabolism and explain why women have lower S-andenosylmethionine, lower homocysteine, and higher choline and betaine. We give a new explanation of the well known phenomenon that folate supplementation lowers homocysteine and we show how to use the model to investigate the effects of vitamin deficiencies, gene polymorphisms, and nutrient input changes. Conclusions: Our model of hepatic one-carbon metabolism is a useful platform for investigating the mechanistic reasons that underlie known associations between metabolites. In particular, we explain how gene expression differences lead to metabolic differences between males and females.

Current status on genome-metabolome-wide associations: an opportunity in nutrition research

2013

Genome-wide association studies (GWASs) have become a very important tool to address the genetic origin of phenotypic variability, in particular associated with diseases. Nevertheless, these types of studies provide limited information about disease etiology and the molecular mechanisms involved. Recently, the incorporation of metabolomics into the analysis has offered novel opportunities for a better understanding of disease-related metabolic deregulation. The pattern emerging from this work is that gene-driven changes in metabolism are prevalent and that common genetic variations can have a profound impact on the homeostatic concentrations of specific metabolites. A particularly interesting aspect of this work takes into account interactions of environment and lifestyle with the genome and how this interaction translates into changes in the metabolome. For instance, the role of PY-ROXD2 in trimethylamine metabolism points to an interaction between host and microbiome genomes (host/ microbiota). Often, these findings reveal metabolic deregulations, which could eventually be tuned with a nutritional intervention. Here we review the development of gene-metabolism association studies from a single-gene/ single-metabolite to a genome-wide/metabolome-wide approach and highlight the conceptual changes associated with this ongoing transition. Moreover, we report some of our recent GWAS results on a cohort of 265 individuals from an ethnically diverse population that validate and refine previous findings on gene-urine metabolism interactions. Specifically, our results confirm the effect of PYROXD2 polymorphisms on trimethylamine metabolism and suggest that a previously reported association of N-acetylated compounds with the ALMS1/NAT8 locus is driven by SNPs in the ALMS1 gene.

Genome-Wide Association Study of Metabolic Traits Reveals Novel Gene-Metabolite-Disease Links

PLoS Genetics, 2014

Metabolic traits are molecular phenotypes that can drive clinical phenotypes and may predict disease progression. Here, we report results from a metabolome-and genome-wide association study on 1 H-NMR urine metabolic profiles. The study was conducted within an untargeted approach, employing a novel method for compound identification. From our discovery cohort of 835 Caucasian individuals who participated in the CoLaus study, we identified 139 suggestively significant (P,5610 28) and independent associations between single nucleotide polymorphisms (SNP) and metabolome features. Fifty-six of these associations replicated in the TasteSensomics cohort, comprising 601 individuals from São Paulo of vastly diverse ethnic background. They correspond to eleven gene-metabolite associations, six of which had been previously identified in the urine metabolome and three in the serum metabolome. Our key novel findings are the associations of two SNPs with NMR spectral signatures pointing to fucose (rs492602, P = 6.9610 244) and lysine (rs8101881, P = 1.2610 233), respectively. Fine-mapping of the first locus pinpointed the FUT2 gene, which encodes a fucosyltransferase enzyme and has previously been associated with Crohn's disease. This implicates fucose as a potential prognostic disease marker, for which there is already published evidence from a mouse model. The second SNP lies within the SLC7A9 gene, rare mutations of which have been linked to severe kidney damage. The replication of previous associations and our new discoveries demonstrate the potential of untargeted metabolomics GWAS to robustly identify molecular disease markers.