Comparative analysis of RADAR vs. conventional techniques for AVF maturation in patients with blood viscosity and vessel elasticity-related diseases through fluid-structure interaction modeling: Anemia, hypertension, and diabetes (original) (raw)
This study aims to compare two surgical techniques, the standard Vein-to-Artery and the newer Artery-to-Vein (Radial Artery Deviation And Reimplantation; RADAR), for enhancing the success of Arterio-Venous Fistula maturation in end-stage renal disease patients. The impact of diseases like anemia, diabetes, hypertension, and chronic kidney disease were considered. The goals are to advance Arterio-Venous Fistula (AVF) surgery, improve patient outcomes, and contribute to evidence-based surgical guidelines. Methods Fluid-structure interaction modeling was employed to investigate how hemodynamic and mechanical stresses impact arteriovenous fistula maturation, with a particular focus on the role of wall shear stress in determining maturation outcomes. The critical threshold for vessel injury was identified as wall shear stress values exceeding 35 N/m 2 , while stenosis formation was projected to occur at levels below 1 N/m 2. This work introduced a novel approach by considering disease-related factors, including blood viscosity (anemia), and vessel elasticity (diabetes, hypertension, and chronic kidney diseases), which directly influence hemodynamics and the generation of wall shear stress. Furthermore, the model was designed to incorporate varying thicknesses and elasticities for both the vein and artery, accurately representing authentic vascular anatomy.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact