Enhancement of Solubility of Furosemide Utilizing Different Techniques of Inclusion Complex (original) (raw)
Related papers
Formulation and Evaluation of Solid Dispersion Tablets of Furosemide Using Polyvinylpyrrolidone K-30
International Journal of Current Pharmaceutical Research, 2021
Objective: The objective of the present study was to improve the aqueous solubility and dissolution characteristics of the loop diuretic furosemide (FUR); a class IV drug in the Biopharmaceutical Classification System (BCS) using solid dispersion technique. Methods: Solvent evaporation and kneading methods were used to produce solid dispersions of FUR in different ratios with the hydrophilic carrier polyvinylpyrrolidone K-30 (PVP-K30). The prepared solid dispersions were evaluated in terms of solubility study, percentage yield, drug content and Fourier transform infrared spectroscopic study (FT-IR). Tablets containing the optimized formula of solid dispersions ( were formulated and their dissolution characteristics were compared with commercial furosemide tablets. Results: The prepared solid dispersions showed an increase in aqueous solubility, especially those formulated in a 1:2 drug: carrier ratio using solvent evaporation method ( it showed a four-fold increase in solubility com...
Formulation and Evaluation of Furosemide Liquisolid Compact
International Journal of Applied Pharmaceutics, 2017
Objective: The purpose of this study was to enhance the dissolution pattern of the practically water-insoluble diuretic drug, furosemide through its formulation into liquisolid tablets.Methods: A mathematical model was used to formulate four liquisolid powder systems using polyethylene glycol 400 as a non-volatile water miscible liquid vehicle. The liquid loading factors of the vehicle were used to calculate the optimum quantities of carrier (Avicel PH 102) and coating materials (Aerosil 200) needed to prepare acceptably flowing and compactible powder mixtures and (R) ratio used was 25. The liquisolid tablets were evaluated for weight variation, percent friability, hardness, content uniformity, disintegration time and in vitro drug release profile. Drug and the prepared systems were characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder x-ray diffraction (PXRD) studies.Results: The enhanced dissolution rate due to the incr...
Comparison of Dissolution Profiles of Furosemide Tablets Available in the Argentinian Market
Journal of Applied Solution Chemistry and Modeling, 2014
In this work dissolution profiles of furosemide tablets of nine commercial products marketed in Argentine were evaluated. All brands fulfill the specifications of dissolution test of USP. Comparison of dissolution profiles were carried out by model-dependent and model independent approaches. Results obtained via model-dependent approach show a first order drug release mechanism especially for Brand I (reference) and Brand IV. Results obtained via modelindependent approach show that there was not significant difference in Dissolution efficiency between the reference product and Brands II, III and IV and in Mean dissolution time between the reference product and Brands II, III, IV and V. Using fit factors, only Brands I and III were similar.
Journal of The Saudi Pharmaceutical Society, 2019
Background: Nanotechnology can offer the advantages of increasing solubility and bioavailability of delivering drugs like Furosemide. The aim of the current study is to investigate the in vitro and in vivo performance of furosemide nanosuspensions. Methods: Furosemide nanosuspensions were prepared by antisolvent precipitation method using full factorial experimental design. Four factors were employed namely; Stirring time, Injection rate, antisolvent: solvent ratio & stabilizer: drug ratio (at two levels = high & low). The in vitro dissolution experiments were conducted to compare the representative formulation with raw drug powder. The bioavailability of nanosuspension was, also, evaluated in mice as an animal model. Results: Solid state characterization (PXRD, DSC and FESEM) did show physical changes during preparation and optimization of the furosemide nanosuspensions. Individual material attributes showed more significant impact on the average particle size of the nanocrystals compared to process parameters. Two-way interactions between material attributes and process parameters significantly affected nanosuspension particle size distribution. Dissolution rate of furosemide nanosuspemsion was significantly higher than that observed for raw furosemide powder. The in vivo pharmacokinetics parameters of nanosuspension in comparison to pure drug showed significant increase in C max and AUC (0-t), about 233% and 266%, respectively. The oral bioavailability of furosemide from nanosuspension was about 2.3 fold higher as compared with the bioavailability from pure drug. Conclusions: Furosemide nanosuspensions prepared using antisolvent precipitation method enhanced the dissolution rate and oral bioavailability compared to raw furosemide powder.
Advances in Pharmacology and Pharmacy, 2014
The design of the present investigation was to prepare furosemide bounded pharmacosomes to enhance solubility and permeability drug by simple reproducible solvent evaporation technique and further investigated. Furosemide bounded pharmacosomes formulation (PMC1 & PMC2) was taken and compared with pure drug by way of enhanced solubility 5.4 fold in the water, 3.33, 4.76 fold in pH 7.4 and pH 5.8 respectively, increases permeability of furosemide bounded pharmacosomes 28.28% when compared with pure drug, drug content showed 94.83, N-octanol/water partition coefficient from 2.33 to 5.15 and in-vitro release profile exhibits excellent sustained drug release properties. Prepared furosemide bounded Pharmacosomes were confirmed from differential scanning calorimetry (DSC), X-ray diffraction (XRD) and FT-IR. The pharmacosomes reported amphiphilic nature may responsible for the improvement of solubility and permeability leads to enhancement of oral bioavailability. From this study it can be concluded that, this formulation strategy becomes important for drug belongs to the BCS class-II & IV.
Formulation and Evaluation of Solid Dispersions of Furosemide in Sodium Starch Glycolate
Methods: Solid dispersion of furosemide in SSG was prepared in ratios of 1:1 and 1 (furosemide):2 (SSG) by kneading method. In each case, the solid dispersion was characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) to ascertain if there were any physicochemical interactions between drug and carrier that could affect dissolution. Tablets containing the solid dispersion were formulated and their dissolution characteristics compared with commercial furosemide tablets. The dissolution studies were performed at 37 ± 0.5 o C and 50 rpm in simulated gastric fluid (pH 1.2). Results: FTIR spectroscopy, DSC, and XRD showed a change in crystal structure toward an amorphous form of furosemide. Dissolution data indicated that furosemide dissolution was enhanced. XRD, DSC, FTIR spectroscopy and dissolution studies indicated that the solid dispersion formulated in 1:2 ratio showed a 5.40-fold increase in dissolution and also exhibited superior dissolution characteristics to commercial furosemide tablets. Conclusion: Solid dispersion technique can be used to improve the dissolution of furosemide.
ADMET and DMPK, 2020
Furosemide is a diuretic drug widely used in chronic renal failure. The drug has low solubility and permeability, which cause clinical problems. Studying the in vitro release performance elucidates the rate and extent of drug dissolved from dosage forms under different conditions. Furosemide reference tablets were tested using USP Apparatuses 1 and 2 as well as the flow-through cell method (USP Apparatus 4), a dissolution apparatus that simulates the human gastrointestinal tract better than the other methods. Dissolution profiles were created with USP Apparatuses 1 and 2 at 25, 50, and 75 rpm and 900 mL of 0.1 M hydrochloric acid, acetate buffer (pH 4.5), and phosphate buffer (pH 6.8). USP Apparatus 4 with a laminar flow of 16 mL/min and 22.6 mm cells was used. Drug dissolution was quantified at 274 nm for 60 min. Mean dissolution time, dissolution efficiency, time to 50 % dissolution, and time to 80 % dissolution data were used to compare dissolution profiles. Additionally, zero-or...
Journal of Drug Delivery and Therapeutics, 2018
The aim of the present research work is to explore the application of mixed solvency concept to formulate and develop a fast dissolving oral film of furosemide with improved drug loading. In the present study, poorly soluble drug, furosemide was tried to be solubilized by employing the combination of physiologically compatible water-soluble additives (solubilizers) to formulate its fast dissolving formulations. For the development of fast dissolving oral film, firstly, different film forming polymers were tested for their film properties. The second fast dissolving layer was also formed and optimized. Solubility studies were conducted to select water-soluble additives for formulation of fast dissolving drug layer. Keeping the total concentration less than 40 % w/v of mixed blends, different aqueous blends were prepared employing solubilizers from among sodium benzoate, sodium acetate, sodium citrate, urea, niacinamide, glycerin, propylene glycol, polyethylene glycol 200, polyethylen...
Revista Colombiana de Ciencias Químico-Farmacéuticas, 2020
The purpose of this study was to evaluate physicochemical properties and dissolution studies of furosemide (FUR), hydrochlorothiazide (HCTZ) and nifedipine (NIF), low water solubility drugs, in raw materials and pharmaceutical formulations. Surface and physicochemical characterization techniques -scanning electronic microscopy (SEM), thermogravimetry (TG), X-ray diffraction (XRD) and infrared (IR) spectrometry- as well as physical and physicochemical tests on tablets and capsules were applied as supporting information on drug quality control. Simple, rapid, and efficient UV-Vis methods were developed and validated for the determination of FUR, HCTZ and NIF samples. SEM exhibited considerable differences in the crystal morphological structures. Among the drugs studied, except for furosemide, more than one polymorph was present in the samples. Drug release profiles were satisfactory for all products. FUR and HCTZ tablets exhibited similar dissolution profiles, with very rapid release ...