Renormalisation of hierarchically interacting Cannings (original) (raw)
Abstract
The idea for this paper arose from discussions with P. Pfaffelhuber and A. Wakolbinger dur-
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (49)
- J.B. Baillon, Ph. Clément, A. Greven and F. den Hollander, On the attracting orbit of a nonlinear transformation arising from renormalization of hierarchically interacting diffusions, Part 1: The compact case, Can. J. Math. 47 (1995) 3-27.
- J.B. Baillon, Ph. Clément, A. Greven and F. den Hollander, On the attracting orbit of a nonlinear transformation arising from renormalization of hierarchically interacting diffusions, Part 2: The non-compact case, J. Funct. Anal. 147 (1997) 236-298.
- N.H. Barton, A.M. Etheridge and A. Véber, A new model for evolution in a spatial continuum, Electr. J. Prob. 15 (2010) 162-216.
- N. Berestycki, Recent progress in coalescent theory, Ensaios Matematicos 16 (2009) 1-193.
- N. Berestycki, A.M. Etheridge and A. Véber, Large scale behaviour of the spatial Lambda-Fleming-Viot process, Ann. Inst. H. Poincaré Probab. Statist. 49 (2013) 374-401.
- J. Bertoin and J.-F. Le Gall, Stochastic flows associated to coalescent processes II: Sto- chastic differential equations, Ann. Inst. H. Poincaré: Probab. Statist. 41 (2005) 307-333.
- N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation, Encyclopedia of Math- ematics and its Applications, Vol. 27, Cambridge University Press, Cambridge, 1987.
- M. Birkner and J. Blath, Computing likelihoods for coalescents with multiple collisions in the infinitely many sites model, J. Math. Biol. 57 (2008) 435-465.
- M. Birkner and J. Blath, Measure-valued diffusions, general coalescents and population genetic inference, Trends in stochastic analysis, London Math. Soc. Lecture Note Ser. 353, Cambridge University Press, Cambridge, 2009, pp. 329-363.
- R.M. Blumenthal and R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968.
- C. Cannings, The latent roots of certain Markov chains arising in genetics: a new approach, I. Haploid models, Adv. Appl. Probab. 6 (1974) 260-290.
- C. Cannings, The latent roots of certain Markov chains arising in genetics: a new approach, II. Further haploid models, Adv. Appl. Probab. 7 (1975) 264-282.
- J.T. Cox, D.A. Dawson and A. Greven, Mutually Catalytic Super Branching Random Walks: Large Finite Systems and Renormalization Analysis, Memoirs of the American Math- ematical Society, Volume 171, Number 809, Amer. Math. Soc., Providence, RI, 2004.
- J.T. Cox and D. Griffeath, Diffusive clustering in the two-dimensional voter model, Ann. Probab. 14 (1986) 347-370.
- D.A. Dawson, Measure-valued Markov processes, in: École d' Été de Probabilités de Saint- Flour XXI-1991, Lecture Notes in Mathematics 1541, Springer, Berlin, 1993, pp. 1-260.
- D.A. Dawson and A. Greven, Multiple time scale analysis of hierarchically interacting diffusions, in: A Festschrift in Honour of Gopinath Kallianpur (eds. S. Cambanis, J.K. Gosh, R.L. Karandikar and P.K. Sen), Springer, 1993, pp. 41-50.
- D.A. Dawson and A. Greven, Multiple scale analysis of interacting diffusions, Probab. Theory Relat. Fields 95 (1993) 467-508.
- D.A. Dawson and A. Greven, Hierarchical models of interacting diffusions: multiple time scales, phase transitions and cluster-formation, Probab. Theory Relat. Fields 96 (1993) 435-473.
- D.A. Dawson and A. Greven, Multiple space-time scale analysis for interacting branching models, Electr. J. Probab. 1 (1996) 1-84.
- D.A. Dawson and A. Greven, Hierarchically interacting Fleming-Viot processes with selec- tion and mutation: Multiple space-time scale analysis and quasi-equilibria, Electr. J. Probab. 4 (1999) 1-81.
- D.A. Dawson and A. Greven, State dependent multitype spatial branching processes and their longtime behavior, Electr. J. Probab. 8 (2003) 1-93.
- D.A. Dawson, A. Greven, F. den Hollander, R. Sun and J. Swart, The renormalization transformation for two-type branching models, Ann. I. Henri Poincaré: Probab. Statist. 44 (2008) 1038-1077.
- D.A. Dawson, A. Greven and J. Vaillancourt, Equilibria and quasi-equilibria for infinite systems of Fleming-Viot processes, Trans. Amer. Math. Soc. 347 (1995) 2277-2360.
- D.A. Dawson, L.G. Gorostiza, and A. Wakolbinger, Hierarchical random walks, in: Asymptotic Methods in Stochastics: Festschrift for Miklós Csörgö (eds. L. Horváth, B. Szyszkowicz), Fields Inst. Commun. 44, Amer. Math. Soc., Providence, RI, 2004, pp. 173-193.
- D.A. Dawson, L.G. Gorostiza and A. Wakolbinger, Degrees of transience and recurrence and hierarchical random walks, Potential Anal. 22 (2005) 305-350.
- D.A. Dawson and P. March, Resolvent estimates for Fleming-Viot operators and unique- ness of solutions to related martingale problems, J. Funct. Anal. 132 (1995) 417-472.
- R. Der, Ch. Epstein and J.B. Plotkin, Generalized population models and the nature of genetic drift, Theor. Popul. Biol. 80 (2011) 80-99.
- P. Donnelly and T. Kurtz, Particle representations for measure-valued population models, Ann. Probab. 1 (1999) 166-205.
- B. Eldon and J. Wakeley, Coalescent processes when the distribution of offspring number among individuals is highly skewed, Genetics 172 (2006) 2621-2633.
- A.M. Etheridge, An Introduction to Superprocesses, Amer. Math. Soc., Providence, RI, 2000.
- A.M. Etheridge, Some Mathematical Models from Population Genetics, in: École d' Été de Probabilités de Saint-Flour XXXIX -2009, Lecture Notes in Mathematics 2012, Springer, Berlin, 2011.
- S.N. Ethier and T. Kurtz, Markov Processes. Characterization and Convergence, John Wiley, New York, 1986.
- S.N. Evans. Coalescing Markov labelled partitions and a continuous sites genetics model with infinitely many types, Ann. Inst. H. Poincaré Probab. Statist. 33 (1997) 339-358.
- K. Fleischmann and A. Greven, Diffusive clustering in an infinite system of hierarchically interacting diffusions, Probab. Theory Relat. Fields 98 (1994) 517-566.
- N. Freeman, The Segregated Lambda-coalescent, To appear in Ann. Probab., arXiv:1109.4363v3 [math.PR].
- A. Greven, Renormalization and universality for multitype population models, in: Inter- acting Stochastic Systems (eds. J.-D. Deuschel, and A. Greven), Springer, Berlin, 2005, pp. 209-244.
- A. Greven and F. den Hollander, Phase transitions for the long-time behavior of interact- ing diffusions, Ann. Probab. 35 (2007) 1250-1306.
- A. Greven, A. Klimovsky and A. Winter, Tree-valued Cannings dynamics, in prepara- tion.
- A. Greven, V. Limic and A. Winter, Coalescent processes arising in a study of diffusive clustering, to appear in Electr. J. Probab.
- A. Greven, P. Pfaffelhuber and A. Winter, Convergence in distribution of random metric measure spaces: Lambda-coalescent measure trees, Probab. Theory Relat. Fields 145 (2009) 285-322.
- F. den Hollander and J. Swart, Renormalization of hierarchically interacting isotropic diffusions, J. Stat. Phys. 93 (1998) 243-291.
- A. Joffe and M. Métivier, Weak convergence of sequences of semimartingales with appli- cations to multitype branching processes, Adv. Appl. Probab. 18 (1986) 20-65.
- R.J. Kooman, Asymptotic behaviour of solutions of linear recurrences and sequences of Möbius-transformations, J. Approx. Theory 93 (1998) 1-58.
- T. Kurtz. Averaging for martingale problems and stochastic approximation, In Applied stochastic analysis (New Brunswick, NJ, 1991), volume 177 of Lecture Notes in Control and Inform. Sci., Springer, Berlin, 1992, pp. 186-209.
- T.M. Liggett, Interacting Particle Systems, Springer, Berlin, 1985.
- T.M. Liggett and F. Spitzer, Ergodic theorems for coupled random walks and other systems with locally interacting components, Z. Wahrsch. Verw. Gebiete 56 (1981) 443-468.
- V. Limic and A. Sturm, The spatial Λ-coalescent, Electr. J. Probab. 11 (2006) 363-393.
- J. Pitman, Coalescents with multiple collisions, Ann. Probab. 27 (1999) 1870-1902.
- J. Pitman, Combinatorial Stochastic Processes, in: École d' Été de Probabilités de Saint- Flour XXXII -2002, Lecture Notes in Mathematics 1875, Springer, Berlin, 2006.