Renormalisation of hierarchically interacting Cannings (original) (raw)

Abstract

The idea for this paper arose from discussions with P. Pfaffelhuber and A. Wakolbinger dur-

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (49)

  1. J.B. Baillon, Ph. Clément, A. Greven and F. den Hollander, On the attracting orbit of a nonlinear transformation arising from renormalization of hierarchically interacting diffusions, Part 1: The compact case, Can. J. Math. 47 (1995) 3-27.
  2. J.B. Baillon, Ph. Clément, A. Greven and F. den Hollander, On the attracting orbit of a nonlinear transformation arising from renormalization of hierarchically interacting diffusions, Part 2: The non-compact case, J. Funct. Anal. 147 (1997) 236-298.
  3. N.H. Barton, A.M. Etheridge and A. Véber, A new model for evolution in a spatial continuum, Electr. J. Prob. 15 (2010) 162-216.
  4. N. Berestycki, Recent progress in coalescent theory, Ensaios Matematicos 16 (2009) 1-193.
  5. N. Berestycki, A.M. Etheridge and A. Véber, Large scale behaviour of the spatial Lambda-Fleming-Viot process, Ann. Inst. H. Poincaré Probab. Statist. 49 (2013) 374-401.
  6. J. Bertoin and J.-F. Le Gall, Stochastic flows associated to coalescent processes II: Sto- chastic differential equations, Ann. Inst. H. Poincaré: Probab. Statist. 41 (2005) 307-333.
  7. N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation, Encyclopedia of Math- ematics and its Applications, Vol. 27, Cambridge University Press, Cambridge, 1987.
  8. M. Birkner and J. Blath, Computing likelihoods for coalescents with multiple collisions in the infinitely many sites model, J. Math. Biol. 57 (2008) 435-465.
  9. M. Birkner and J. Blath, Measure-valued diffusions, general coalescents and population genetic inference, Trends in stochastic analysis, London Math. Soc. Lecture Note Ser. 353, Cambridge University Press, Cambridge, 2009, pp. 329-363.
  10. R.M. Blumenthal and R.K. Getoor, Markov Processes and Potential Theory, Academic Press, New York, 1968.
  11. C. Cannings, The latent roots of certain Markov chains arising in genetics: a new approach, I. Haploid models, Adv. Appl. Probab. 6 (1974) 260-290.
  12. C. Cannings, The latent roots of certain Markov chains arising in genetics: a new approach, II. Further haploid models, Adv. Appl. Probab. 7 (1975) 264-282.
  13. J.T. Cox, D.A. Dawson and A. Greven, Mutually Catalytic Super Branching Random Walks: Large Finite Systems and Renormalization Analysis, Memoirs of the American Math- ematical Society, Volume 171, Number 809, Amer. Math. Soc., Providence, RI, 2004.
  14. J.T. Cox and D. Griffeath, Diffusive clustering in the two-dimensional voter model, Ann. Probab. 14 (1986) 347-370.
  15. D.A. Dawson, Measure-valued Markov processes, in: École d' Été de Probabilités de Saint- Flour XXI-1991, Lecture Notes in Mathematics 1541, Springer, Berlin, 1993, pp. 1-260.
  16. D.A. Dawson and A. Greven, Multiple time scale analysis of hierarchically interacting diffusions, in: A Festschrift in Honour of Gopinath Kallianpur (eds. S. Cambanis, J.K. Gosh, R.L. Karandikar and P.K. Sen), Springer, 1993, pp. 41-50.
  17. D.A. Dawson and A. Greven, Multiple scale analysis of interacting diffusions, Probab. Theory Relat. Fields 95 (1993) 467-508.
  18. D.A. Dawson and A. Greven, Hierarchical models of interacting diffusions: multiple time scales, phase transitions and cluster-formation, Probab. Theory Relat. Fields 96 (1993) 435-473.
  19. D.A. Dawson and A. Greven, Multiple space-time scale analysis for interacting branching models, Electr. J. Probab. 1 (1996) 1-84.
  20. D.A. Dawson and A. Greven, Hierarchically interacting Fleming-Viot processes with selec- tion and mutation: Multiple space-time scale analysis and quasi-equilibria, Electr. J. Probab. 4 (1999) 1-81.
  21. D.A. Dawson and A. Greven, State dependent multitype spatial branching processes and their longtime behavior, Electr. J. Probab. 8 (2003) 1-93.
  22. D.A. Dawson, A. Greven, F. den Hollander, R. Sun and J. Swart, The renormalization transformation for two-type branching models, Ann. I. Henri Poincaré: Probab. Statist. 44 (2008) 1038-1077.
  23. D.A. Dawson, A. Greven and J. Vaillancourt, Equilibria and quasi-equilibria for infinite systems of Fleming-Viot processes, Trans. Amer. Math. Soc. 347 (1995) 2277-2360.
  24. D.A. Dawson, L.G. Gorostiza, and A. Wakolbinger, Hierarchical random walks, in: Asymptotic Methods in Stochastics: Festschrift for Miklós Csörgö (eds. L. Horváth, B. Szyszkowicz), Fields Inst. Commun. 44, Amer. Math. Soc., Providence, RI, 2004, pp. 173-193.
  25. D.A. Dawson, L.G. Gorostiza and A. Wakolbinger, Degrees of transience and recurrence and hierarchical random walks, Potential Anal. 22 (2005) 305-350.
  26. D.A. Dawson and P. March, Resolvent estimates for Fleming-Viot operators and unique- ness of solutions to related martingale problems, J. Funct. Anal. 132 (1995) 417-472.
  27. R. Der, Ch. Epstein and J.B. Plotkin, Generalized population models and the nature of genetic drift, Theor. Popul. Biol. 80 (2011) 80-99.
  28. P. Donnelly and T. Kurtz, Particle representations for measure-valued population models, Ann. Probab. 1 (1999) 166-205.
  29. B. Eldon and J. Wakeley, Coalescent processes when the distribution of offspring number among individuals is highly skewed, Genetics 172 (2006) 2621-2633.
  30. A.M. Etheridge, An Introduction to Superprocesses, Amer. Math. Soc., Providence, RI, 2000.
  31. A.M. Etheridge, Some Mathematical Models from Population Genetics, in: École d' Été de Probabilités de Saint-Flour XXXIX -2009, Lecture Notes in Mathematics 2012, Springer, Berlin, 2011.
  32. S.N. Ethier and T. Kurtz, Markov Processes. Characterization and Convergence, John Wiley, New York, 1986.
  33. S.N. Evans. Coalescing Markov labelled partitions and a continuous sites genetics model with infinitely many types, Ann. Inst. H. Poincaré Probab. Statist. 33 (1997) 339-358.
  34. K. Fleischmann and A. Greven, Diffusive clustering in an infinite system of hierarchically interacting diffusions, Probab. Theory Relat. Fields 98 (1994) 517-566.
  35. N. Freeman, The Segregated Lambda-coalescent, To appear in Ann. Probab., arXiv:1109.4363v3 [math.PR].
  36. A. Greven, Renormalization and universality for multitype population models, in: Inter- acting Stochastic Systems (eds. J.-D. Deuschel, and A. Greven), Springer, Berlin, 2005, pp. 209-244.
  37. A. Greven and F. den Hollander, Phase transitions for the long-time behavior of interact- ing diffusions, Ann. Probab. 35 (2007) 1250-1306.
  38. A. Greven, A. Klimovsky and A. Winter, Tree-valued Cannings dynamics, in prepara- tion.
  39. A. Greven, V. Limic and A. Winter, Coalescent processes arising in a study of diffusive clustering, to appear in Electr. J. Probab.
  40. A. Greven, P. Pfaffelhuber and A. Winter, Convergence in distribution of random metric measure spaces: Lambda-coalescent measure trees, Probab. Theory Relat. Fields 145 (2009) 285-322.
  41. F. den Hollander and J. Swart, Renormalization of hierarchically interacting isotropic diffusions, J. Stat. Phys. 93 (1998) 243-291.
  42. A. Joffe and M. Métivier, Weak convergence of sequences of semimartingales with appli- cations to multitype branching processes, Adv. Appl. Probab. 18 (1986) 20-65.
  43. R.J. Kooman, Asymptotic behaviour of solutions of linear recurrences and sequences of Möbius-transformations, J. Approx. Theory 93 (1998) 1-58.
  44. T. Kurtz. Averaging for martingale problems and stochastic approximation, In Applied stochastic analysis (New Brunswick, NJ, 1991), volume 177 of Lecture Notes in Control and Inform. Sci., Springer, Berlin, 1992, pp. 186-209.
  45. T.M. Liggett, Interacting Particle Systems, Springer, Berlin, 1985.
  46. T.M. Liggett and F. Spitzer, Ergodic theorems for coupled random walks and other systems with locally interacting components, Z. Wahrsch. Verw. Gebiete 56 (1981) 443-468.
  47. V. Limic and A. Sturm, The spatial Λ-coalescent, Electr. J. Probab. 11 (2006) 363-393.
  48. J. Pitman, Coalescents with multiple collisions, Ann. Probab. 27 (1999) 1870-1902.
  49. J. Pitman, Combinatorial Stochastic Processes, in: École d' Été de Probabilités de Saint- Flour XXXII -2002, Lecture Notes in Mathematics 1875, Springer, Berlin, 2006.