Challenges and Opportunities in Text Generation Explainability (original) (raw)

SyntaxShap: Syntax-aware Explainability Method for Text Generation

arXiv (Cornell University), 2024

To harness the power of large language models in safety-critical domains, we need to ensure the explainability of their predictions. However, despite the significant attention to model interpretability, there remains an unexplored domain in explaining sequence-to-sequence tasks using methods tailored for textual data. This paper introduces SyntaxShap, a local, modelagnostic explainability method for text generation that takes into consideration the syntax in the text data. The presented work extends Shapley values to account for parsing-based syntactic dependencies. Taking a game theoric approach, SyntaxShap only considers coalitions constraint by the dependency tree. We adopt a model-based evaluation to compare SyntaxShap and its weighted form to state-ofthe-art explainability methods adapted to text generation tasks, using diverse metrics including faithfulness, coherency, and semantic alignment of the explanations to the model. We show that our syntax-aware method produces explanations that help build more faithful and coherent explanations for predictions by autoregressive models. Confronted with the misalignment of human and AI model reasoning, this paper also highlights the need for cautious evaluation strategies in explainable AI. 1

Explainable Natural Language Processing

Synthesis Lectures on Human Language Technologies, 2021

Synthesis Lectures on Human Language Technologies is edited by Graeme Hirst of the University of Toronto. The series consists of 50-to 150-page monographs on topics relating to natural language processing, computational linguistics, information retrieval, and spoken language understanding. Emphasis is on important new techniques, on new applications, and on topics that combine two or more HLT subfields.

Explainable NLP: A Novel Methodology to Generate Human-Interpretable Explanation for Semantic Text Similarity

Communications in Computer and Information Science, 2021

Text Similarity has significant application in many real-world problems. Text Similarity Estimation using NLP techniques can be leveraged for automating a variety of tasks that are relevant in business and social context. The outcomes given by AI-powered automated systems provide guidance for humans to take decisions. However, since the AI-powered system is a "blackbox", for the human to trust its outcome and to take the right decision or action based on the outcome, there needs to be an interface between the human and the machine which can explain the reason for the outcome and that interface is what we call "Explainable AI". In this paper, we have made a twofold attempt, first, 1) to build a state-of-the-art Text Similarity Scoring System which would match two texts based on semantic similarity and then, 2) build an Explanation Generation Methodology to generate human-interpretable explanation for the text similarity match score.

Explainable AI for NLP: Decoding Black Box

International Journal of Computer Trends and Technology, 2022

Recent advancements in machine learning have sparked greater interest in previously understudied topics. As machine learning improves, experts are being pushed to understand and trace how algorithms get their results, how models think, and why the end outcome. It is also difficult to communicate the outcome to end customers and internal stakeholders such as sales and customer service without explaining the outcomes in simple language, especially using visualization. In specialized domains like law and medicine, it becomes vital to understand the machine learning output.

Automatic Generation of Natural Language Explanations

Proceedings of the 23rd International Conference on Intelligent User Interfaces Companion, 2018

An important task for recommender system is to generate explanations according to a user's preferences. Most of the current methods for explainable recommendations use structured sentences to provide descriptions along with the recommendations they produce. However, those methods have neglected the review-oriented way of writing a text, even though it is known that these reviews have a strong influence over user's decision. In this paper, we propose a method for the automatic generation of natural language explanations, for predicting how a user would write about an item, based on user ratings from different items' features. We design a character-level recurrent neural network (RNN) model, which generates an item's review explanations using longshort term memories (LSTM). The model generates text reviews given a combination of the review and ratings score that express opinions about different factors or aspects of an item. Our network is trained on a sub-sample from the large real-world dataset BeerAdvocate. Our empirical evaluation using natural language processing metrics shows the generated text's quality is close to a real user written review, identifying negation, misspellings, and domain specific vocabulary.

MARTA: Leveraging Human Rationales for Explainable Text Classification

2021

Explainability is a key requirement for text classification in many application domains ranging from sentiment analysis to medical diagnosis or legal reviews. Existing methods often rely on “attention” mechanisms for explaining classification results by estimating the relative importance of input units. However, recent studies have shown that such mechanisms tend to mis-identify irrelevant input units in their explanation. In this work, we propose a hybrid human-AI approach that incorporates human rationales into attention-based text classification models to improve the explainability of classification results. Specifically, we ask workers to provide rationales for their annotation by selecting relevant pieces of text. We introduce MARTA, a Bayesian framework that jointly learns an attention-based model and the reliability of workers while injecting human rationales into model training. We derive a principled optimization algorithm based on variational inference with efficient updat...

AI Explainability. A Bridge Between Machine Vision and Natural Language Processing

2020

This paper attempts to present an appraisal review of explainable Artificial Intelligence research, with a focus on building a bridge between image processing community and natural language processing (NLP) community. The paper highlights the implicit link between the two disciplines as exemplified from the emergence of automatic image annotation systems, visual question-answer systems. Text-To-Image generation and multimedia analytics. Next, the paper identified a set of natural language processing fields where the visual-based explainability can boost the local NLP task. This includes, sentiment analysis, automatic text summarization, system argumentation, topical analysis, among others, which are highly expected to fuel prominent future research in the field.

On the Explainability of Natural Language Processing Deep Models

ACM Computing Surveys

Despite their success, deep networks are used as black-box models with outputs that are not easily explainable during the learning and the prediction phases. This lack of interpretability is significantly limiting the adoption of such models in domains where decisions are critical such as the medical and legal fields. Recently, researchers have been interested in developing methods that help explain individual decisions and decipher the hidden representations of machine learning models in general and deep networks specifically. While there has been a recent explosion of work on Ex plainable A rtificial I ntelligence ( ExAI ) on deep models that operate on imagery and tabular data, textual datasets present new challenges to the ExAI community. Such challenges can be attributed to the lack of input structure in textual data, the use of word embeddings that add to the opacity of the models and the difficulty of the visualization of the inner workings of deep models when they are traine...

Notions of explainability and evaluation approaches for explainable artificial intelligence

Explainable Artificial Intelligence (XAI) has experienced a significant growth over the last few years. This is due to the widespread application of machine learning, particularly deep learning, that has led to the development of highly accurate models that lack explainability and interpretability. A plethora of methods to tackle this problem have been proposed, developed and tested, coupled with several studies attempting to define the concept of explainability and its evaluation. This systematic review contributes to the body of knowledge by clustering all the scientific studies via a hierarchical system that classifies theories and notions related to the concept of explainability and the evaluation approaches for XAI methods. The structure of this hierarchy builds on top of an exhaustive analysis of existing taxonomies and peer-reviewed scientific material. Findings suggest that scholars have identified numerous notions and requirements that an explanation should meet in order to be easily understandable by end-users and to provide actionable information that can inform decision making. They have also suggested various approaches to assess to what degree machine-generated explanations meet these demands. Overall, these approaches can be clustered into human-centred evaluations and evaluations with more objective metrics. However, despite the vast body of knowledge developed around the concept of explainability, there is not a general consensus among scholars on how an explanation should be defined, and how its validity and reliability assessed. Eventually, this review concludes by critically discussing these gaps and limitations, and it defines future research directions with explainability as the starting component of any artificial intelligent system.

An Experimental Investigation into the Evaluation of Explainability Methods

arXiv (Cornell University), 2023

EXplainable Artificial Intelligence (XAI) aims to help users to grasp the reasoning behind the predictions of an Artificial Intelligence (AI) system. Many XAI approaches have emerged in recent years. Consequently, a subfield related to the evaluation of XAI methods has gained considerable attention, with the aim to determine which methods provide the best explanation using various approaches and criteria. However, the literature lacks a comparison of the evaluation metrics themselves, that one can use to evaluate XAI methods. This work aims to fill this gap by comparing 14 different metrics when applied to nine stateof-the-art XAI methods and three dummy methods (e.g., random saliency maps) used as references. Experimental results show which of these metrics produces highly correlated results, indicating potential redundancy. We also demonstrate the significant impact of varying the baseline hyperparameter on the evaluation metric values. Finally, we use dummy methods to assess the reliability of metrics in terms of ranking, pointing out their limitations.