Comparative Study of Some Deep Learning Object Detection Algorithms: R-CNN, FAST R-CNN, FASTER R-CNN, SSD, and YOLO (original) (raw)
Due to its numerous applications and new technological advancements, object detection has gained more attention in the last few years. This study examined various uses of some deep learning object detection algorithms. These algorithms are divided into two-stage detectors like Region Based Convolutional Neural Network (R-CNN), Fast Region Based Convolutional Neural Network (Faster R-CNN), and Faster Region Based Convolutional Neural Network (Faster R-CNN), and one-stage detectors like Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO) algorithms that are used in text and face detection, image retrieval, security, surveillance, traffic control, traffic sign/light detection, pedestrian detection and in medical areas among others. This research primarily focuses on three applications: drone surveillance, applications relating to traffic, and medical fields. Findings from the performed analysis indicate that YOLO stands out as the predominant algorithm for drone surveillance among different deep learning models used in various application fields and being a one-stage detector. In terms of usage in traffic-related applications, SSD proved to be a prominent one-stage detector alongside Faster R-CNN which gained popularity as a two-stage detector preferred for applications in the medical field.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact