1350W 4-kanaals versterker voor Stage-luidspreker (original) (raw)

2018, Journal of the Brazilian Chemical Society

Microscopic techniques were combined to study the influence of corrosion rate on the morphologic behavior of AISI 1020 steel specimens submitted to thermal degradation of a typical acid crude oil (total acid number (TAN) = 2.1390 mg KOH g-1 and total sulfur (S) = 0.7778 wt.%). The techniques used were light microscopy (LM), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDX), atomic force microscopy (AFM) as well as Raman spectroscopy. Assays were performed in six different degradation time (t = 6, 12, 24, 36, 48 and 72 h) at 320 °C. After the exposure of the specimens to petroleum, a reduction above 37% in the TAN after t = 72 h was observed, with a maximum corrosion rate during the first periods of degradation (t = 6 and 12 h). Correlating the TAN and corrosion rate data with the microscopic data, the images of LM, AFM, and SEM/EDX showed that after 6 h of exposure to petroleum, a passivation film was formed on the surface of the steel. This film consisted of two layers, an external one, formed of FeS, and an internal one, composed of iron oxides and oxyhydroxides. However, after 48 h of thermal degradation, this morphology was altered to a single layer of FeS coating the steel surface.